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Abstract
In the 1988 edition of Nature’s ‘News and Views’, J Maddox wrote that ‘one
of the continuing scandals in physical sciences is that it remains in general
impossible to predict the structure of even the simplest crystallographic solids
from knowledge of their chemical composition’ (Maddox 1988 Nature 335 7).
There is, however, the possibility of making some progress in this direction
by combining two fundamental areas of physics: quantum mechanics and
statistical physics. The starting point is an electronic structure theory density
functional theory (DFT) (Hohenberg and Kohn 1964 Phys. Rev. 136 864B,
Kohn and Sham 1965 Phys. Rev. 140 1133A) which independently establishes
the range (first neighbours, second neighbours, etc), type (pairs, three body,
four body, etc) and chemical character (charge transfer, atomic site effects,
etc) of the interaction energies. All these can be determined from cluster
expansions (CE) (Sanchez et al 1984 Physica A 128 334) which give access
to both huge parameter spaces (e.g. for ground-state searches) and systems
containing more than a million atoms (e.g. for microstructure studies). It will
be shown that, together with Monte Carlo simulations, CE open the possibility
of quantitatively studying alloy properties which possess a delicate temperature
dependence, such as short-range-order effects, mixing enthalpies or dynamic
processes like the ageing of microstructures. This method is extended to
alloy surfaces in order to investigate geometric relaxations as well as surface
segregation, i.e. the enrichment of one component in the near-surface region. To
establish a complementary, experimental view of the geometrical structure and
chemical composition of surfaces, experimental low energy electron diffraction
spectra are analysed by the use of a multiple-scattering theory (Pendry 1974
Low Energy Electron Diffraction (London: Academic), Van Hove and Tong
1979 Surface Crystallography by LEED (Berlin: Springer)) providing a test of
our DFT predicted surface properties.
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1. Introduction

If A and B atoms are forced to crystallize on a common lattice, they may either order (AB bonds)
or cluster (AA and BB bonds) depending on whether the occupation of neighbouring lattice sites
by identical or different species is energetically favoured. From a fundamental point of view,
the answer to the question of the physical behaviour of a binary alloy A1−x Bx as a function of
concentration and temperature seems straightforward: an optimization of the Gibbs free energy
G(x, T ) would immediately allow for the calculation of the alloy’s equilibrium properties for
any arbitrary concentration x and temperature T . The determination of G(x, T ), however, is
not an easy task: we have to deal with a many-body problem and therefore, approximations
have to be made which must be tested carefully with respect to their validity.

Generally, theoretical investigations about phase stability and alloy formation either
use semi-empirical concepts [7–11] (e.g. based on macroscopic observations) or apply an
electronic structure theory [2, 3]. At a first glance, the latter approach appears to be more
general in the sense that the alloy is described by the rules of quantum mechanics. However,
many alloy problems need the consideration of both huge configuration spaces and models
containing thousands of atoms—a number far beyond the capacity of today’s computers. As
a consequence, most modern approaches to treat metal alloys and their surfaces compromise
by simplifying the electronic Hamiltonian [12, 13], using empirical parameters [14–18] or
by forbidding symmetry-lowering geometric relaxations [19–22]. In addition to the system
size, theoretical studies must account for the alloys’ specific phenomena which do not exist
in pure-element crystals. Examples are surface segregation, describing the deviation from the
alloy’s bulk-like composition in the near-surface layers, or short-range order (SRO), defining
to what extent a disordered phase of a real alloy differs from the ideal random alloy.

From the experimental point of view,tremendous efforts were made over the last decades to
improve our knowledge of metal alloys. These activities led to extremely valuable experimental
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data collections [23–26] of alloy properties and phase diagrams. The large interest is fuelled
by the technical relevance of metal alloys. Indeed, their applications range from lightweight
cars and aircraft turbine blades to protective coatings in corrosive environments and magnetic
devices. For example, it is believed that the use of so-called ‘heat-treatable’ alloys in the
automotive industry will reduce the weight of cars by about 40% over the next ten years
without losing today’s safety standards [27]. These (mainly) Mg- and Al-based alloys can
be efficiently hardened by controlled heating and cooling processes [28]. An understanding
of the microscopic processes behind this hardening effect is an important prerequisite for the
technical application.

How can we treat and solve such problems connected to alloy formation, phase stability
and geometric structure without any empirical parameters as input, but with an accuracy that
allows the quantitative comparison with experimental data? First, a quantum-mechanical
approach based on density functional theory (DFT) [2, 3] is used as the starting point for the
alloy investigations. Those methods are called ‘first-principles methods’ in the sense that, for
a given crystal lattice, no parameters are optimized by fitting experimental data. The access is,
however, restricted to relatively small system sizes (<200 atoms). Moreover, the temperature
dependence of alloy properties must be considered. This cannot be done by methods which
only search the positional space such as molecular dynamics and not the configurational
space being essential for modelling e.g. surface segregation. These two restrictions will be
overcome by additionally applying concepts from statistical physics. On the one hand, cluster
expansions (CE) [4] are used to treat systems ranging from a few up to a million atoms without
giving up the accuracy of modern DFT calculations. On the other hand, Monte Carlo (MC)
simulations permit us to study finite-temperature properties such as SRO phenomena or mixing
enthalpies. The consideration of activation barriers for atomic exchange processes allows us
to study the dynamics of microstructures using effective interactions retrieved from quantum-
mechanical calculations. Regarding the surfaces of alloys, the theoretical predictions will be
checked with experimental data resulting from the—again quantum-mechanical—evolution
of low-energy electron diffraction (LEED) [29] intensities. Indeed, LEED probably is the
most powerful and successful method in surface crystallography, with a geometric accuracy
approaching the picometre level. This accuracy is reached by applying a multiple scattering
theory [5, 6] in order to fit experimental intensity spectra with respect to their shape and peak
positions. The combination of LEED, DFT, MC and CE can even be used to learn more about
incommensurate systems.

The structure of the present work is as follows: our starting point is the fundamental
question of how to quantify ordering, followed by a short description of the most relevant
(semi-)empirical models. Next (section 3), the principal theoretical procedure and its extension
to surface properties are introduced. Here, we will also see how DFT allows us to investigate
strain effects in alloy systems. In section 4, the method will be applied to volume properties
relevant for ordering, phase stability and electronic structure of metal alloys. In addition
to the thermodynamic behaviour of different systems, we will also discuss ageing processes
in quenched solid solutions leading to the formation of characteristic microstructures, the so-
called precipitates. Finally, section 5 focuses on surface properties, addressing first segregation
profiles and surface structures, next the SRO, and eventually going beyond the limits of CE:
the description of an incoherent crystal problem.

2. How to describe ordering in metal alloys

The temperature–composition phase diagram of a binary solid state alloy, A1−x Bx , may
consist of homogeneous single-phase regions (such as ordered compounds AmBn) as well
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Figure 1. Portion of a schematic phase diagram of a binary alloy system A1−x Bx . Beside two
intermetallic compounds with ideal compositions x = 0.25 and 0.50, a third solid phase can be
detected where no LRO exists. Such phases are called ‘solid solutions’.

as heterogeneous, phase-coexistence regions [24]. A portion of such a phase diagram is
schematically sketched in figure 1. The two full curves at higher temperatures are the liquidus
and solidus curves which separate the region where the liquid and solid coexist from the liquid
and solid phase, respectively. In the solid phase, two intermetallic compounds, i.e. long-
range-ordered (LRO) phases, ‘IM1’ and ‘IM2’, exist at low temperatures, whilst the rest of the
solid phase region represents a ‘solid solution’ which is stable over a large concentration and
temperature regime. Although such solid solutions are still often treated as a substitutionally
disordered alloy, where lattice sites are randomly occupied by A and B atoms, it had already
been known for a long time that in reality more or less all solid solutions show some kind
of SRO. The consideration of SRO is essential for a correct, quantitative description of the
energetics and structure of this alloy phase. Therefore, the physical properties of solid solutions
must be modelled by a disordered alloy which is not necessarily a random alloy.

If we wish to describe and understand the properties of different solid phases and their
stability on theoretical grounds, we are confronted with a number of problems:

(i) Many theoretical models are restricted to some pair interactions which, in general, do not
reproduce experimentally determined alloy properties quantitatively. Instead, many-body
interactions must be considered whose determination can be rather complex.

(ii) Most intermetallic compounds undergo atomic relaxations in their unit cell (consistent with
the symmetry of the compound). Neglecting such relaxations can change the hierarchy
of stability between different intermetallic phases and even lead to a wrong ground state.

(iii) The quantitative prediction of SRO phenomena often requires models with giant unit cells.
Model systems containing up to 105 atoms may be demanded, i.e. much more than the
about 200 metal atoms treatable by today’s computers within the framework of quantum
mechanics.

(iv) The temperature dependence of ordering phenomena must not be neglected. However, in
general, electronic structure theories neglect configurational entropy.
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Figure 2. The dilemma in describing ordering (taken from [30]): does the atom marked by an
arrow belong to ‘a cluster of pure A atoms’, or to a ‘region of perfect AB order’?

At a first glance, this looks like a totally hopeless dilemma, e.g. we did not yet introduce
a measure of how to quantify ordering, let alone a model of how to predict it. Ziman [30]
nicely described the difficulty in handling ordered zones in a disordered matrix by the help
of figure 2: for the given configuration, we cannot decide if the atom marked by an arrow
belongs to a ‘cluster of pure A atoms’ or to a ‘region of perfect AB order’. He demonstrated
by applying percolation theory that almost every A atom belongs to an infinite cluster of A
atoms. Paradoxically, if we are looking for ordered domains (figure 2), then almost every atom
belongs to an infinite domain with perfect AB ordering. Help comes by introducing statistical
concepts [30–32]: for a system consisting of N sites each surrounded by M neighbours, the
probability of a bond being of AB type is given by

PAB = lim
N→∞

(
NAB

1
2 M N

)
(1)

with NAB being the total number of AB-type bonds. The denominator gives the total number
of bonds in the system. We can now easily introduce a nearest-neighbour correlation
parameter �AB. Assuming that each site of the system is independently occupied by an
A or B atom with probability xA or xB (xA + xB = 1), PAB would be 2xAxB. Then, �AB is
defined by the difference

�AB = 1
2 PAB − xAxB. (2)

Dividing �AB by −xAxB leads to the well-known Warren–Cowley SRO parameter [33]

α j = 1 − P j
AB

2xAxB
. (3)

Here, α j is already extended to arbitrary neighbour distances j . The sign of α j indicates
whether atoms in a given distance j prefer AB ordering (α j < 0) or clustering (α j > 0). The
SRO parameters are normalized such that −1 � α j � +1; α j = 0 for all j stands for a perfect
random alloy, i.e. an alloy without any atomic correlations. Since α j can be determined from
diffuse x-ray and neutron diffraction experiments [34–36], a quantitative comparison between
calculation and measurement is possible.
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In principle, the knowledge of the Gibbs free energy

G = H − T S (4)

of the alloy system as a function of concentration x , with H being the enthalpy, T the
temperature and S the entropy, gives access to all equilibrium properties of the system.
However, only the enthalpy H is directly related to the internal ‘crystal energy’, which is
determined by the bond strength. Putting temperature effects aside for the moment, two
different concepts can be used to determine H : (i) (semi-)empirical models, which are largely
based on macroscopic observations, or (ii) an electronic structure theory based on quantum
mechanics.

Starting with the former, the most famous empirical model for predicting solid solution
formation is probably the set of Hume-Rothery [7, 37] rules. Hume-Rothery studied solid
solutions of binary systems in the early 1930s and he proposed three factors controlling the
extent of solid solubility, namely atomic size, electronegativity and the number of valence
electrons of the two elements. His pioneering work still plays an important role in today’s
understanding of solid solutions. Another famous, semi-empirical access to alloy formation is
Miedema’s atomic cell model [8, 38, 39]. It assumes that processes between atomic Wigner–
Seitz cells of A and B atoms correspond to those which happen when a macroscopic piece of
metal A is put into contact with a piece of metal B. This is called the macroscopic atom picture.
As the boundary conditions have changed at the interface area between the A and B cells, the
atomic volumes of the cells will change, too. Miedema and co-workers assumed [8, 38, 39]
that this change in boundary conditions is responsible for the formation enthalpy, �H f , of
an alloy, whereby the amount of �H f is proportional to the size of the contact area between
dissimilar atomic cells. The model is astonishingly successful, especially with respect to the
sign of formation enthalpies [40]. Although the model fails for some groups of alloys, its
practical usefulness is accepted, especially in metallurgy.

Many attempts have been made to find a single characteristic property of binary alloys
that would automatically determine whether, for a given concentration, two elements form an
intermetallic compound or phase-separate. From the many efforts to sort compounds with
respect to their structure, the best known collection is due to Pettifor, in whose structure
maps [9, 41] each of the two elements in a binary compound gets a ‘coordinate value’, placing
it in a given structure domain of an empirical structure-sorting map. This phenomenological
coordinate, the so-called Mendeleev number [42], originates from the electronegativity of
each element. Over the years, a lot of studies have been made to improve the validity
of structure maps by the help of microscopic atomic coordinates. Probably the most
successful examples are Zunger’s orbital radii method [10] which uses the difference between
pseudopotential (PP) radii sums (constructed for first-principles calculations) as the ‘coordinate
value’ (the concept of PPs will be explained in section 2.1) and Villars’ [11] coordinate plots
combining macroscopic with microscopic coordinates.

In this review the bulk and surface properties of metal alloys are studied without any
experimental parameters as input. As already mentioned in the introduction, we use DFT [2, 3]
as the starting point for our studies. Although DFT permits one to calculate alloy properties
with an accuracy that often allows for a quantitative comparison with experimental data, it
is usually limited to a small subset of the configuration space. The geometric relaxation
of unit cells consisting of more than 100 atoms already becomes extremely difficult, and
even impossible for some cases. So, compared to the 2N configurations of a binary system
containing N atoms, we are restricted to a very small part of the parameter space. Normally,
a set of ‘intuitive structures’ is chosen and that with the minimal energy is postulated as the
ground-state configuration. This, however, fails to allow for surprises: only one of the chosen
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E = Π1·J1(   ) + Π2·J2(       ) + Π3·J3(      ) + Π4·J4(        )  + ...
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Figure 3. The concept of CE: the crystal is separated into characteristic figures (shown here for
the fcc lattice). The energy of any configuration can then be written as a linear combination of the
characteristic energies J f of the figures.

input structures can result as the ground state. In principle, there are two possibilities to
circumvent this problem:

(i) A simplified electronic Hamiltonian combined with perturbation theory is used [12],
or the quantum-mechanical total energy is replaced by phenomenological effective pair
potentials [13]. However, the precision of these approaches is very limited, and so they
only work for specialized cases.

(ii) The accuracy of DFT is extended to huge configuration spaces by combining DFT with
concepts from statistical mechanics.

The basic idea by Sanchez et al [4] is called CE and outlined in figure 3: for a given
underlying lattice, the crystal structure is divided into characteristic figures such as pairs,
triangles, etc. Then, the energy of anyconfiguration σ on this lattice can be uniquely written [4]
as a linear combination of the characteristic energies J of each individual figure. In practice,
the only error we make is that the sum must be truncated at some point. The � f ’s in figure 3
are structure-dependent factors and will be discussed in detail in section 3.2.

The CE ansatz allows us to treat physical problems ranging from a few up to a million
atoms without giving up the accuracy of modern DFT calculations. However, this concept
still needs to be extended to finite temperatures. This problem can be solved by using E(σ )

in figure 3 in MC simulations. We can even extend the field of application to non-equilibrium
processes by switching from thermodynamic MC to kinetic MC [43]. For this, activation
barriers for exchange processes between neighbour atoms have to be considered and the number
of possible exchange processes between atoms must be restricted to small distances. Indeed,
the combination of a CE with MC allows us to treat the energetic properties of large systems
and their temperature dependence with the accuracy of quantum-mechanical calculations [44].
This option is, for example, essential to calculate thermodynamic properties of precipitates1

in metal alloys [45, 46] and their time evolution [47].
So far, we have ignored the fact that every solid is finite and therefore has a surface.

Including surface effects in our description of binary metal alloys is an important prerequisite
to understand processes which depend on an interaction between the bulk and the surface.
The most important example is probably the interplay between bulk diffusion (controlled
by kinetics) and surface segregation (controlled by thermodynamics). Surface segregation
describes the deviation of the chemical composition in the near-surface layers, compared to
the bulk, and plays a technologically important role, as it may strongly influence physical and
1 Precipitates are characteristic microstructures which may consist of many thousands of atoms, as discussed in
sections 4.3 and 4.4.
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chemical processes such as catalysis, crystal growth or corrosion. For these reasons, it is not
surprising that, for many years, efforts have been undertaken to understand surface segregation
by (semi-)empirical models [48, 49] as successfully applied to bulk properties. Modern
approaches for describing surface segregation use either empirical potentials like the embedded
atom method [15, 16] or the coherent potential approximation (CPA) [21, 22] which—at least
in practice—does not consider symmetry-lowering relaxations. So, the latter only works for
systems with a very small misfit between the lattice parameters of the constituents. Yet, the
spacing between the near-surface layers can be rather different from the bulk value [50]. Such
relaxations are often strongly correlated to the segregation profile of the surface. In other
words, surface segregation is not independent of geometric properties.

Furthermore, our model must account for the broken symmetry at the surface. This reduces
the conserved point symmetry operations of the bulk (e.g. the 48 operations for cubic fcc or
bcc lattices) to a much smaller, orientation-dependent number. Consequently, the symmetric
degeneration of CE figures decreases and therefore the number of geometrically different
figures (figure 3) in the CE increases. This concept was, for example, recently applied to study
surface segregation in Ni–Al alloys for T = 0 K [51].

The principles of quantum mechanics do not only allow us to calculate alloy surface
properties from first principles, but also help test the correctness of the prediction by analysing
experimental data. The method of choice is LEED [29], probably the most powerful and
successful method in surface crystallography, with a geometric accuracy approaching the
picometre level. Since there exists a number of excellent review articles [52–54], only the
principal concepts will be described here briefly. The power of LEED comes from the high
elastic electron scattering cross section of atoms, when the incident electrons have rather low
energies (20–600 eV ↔ λ ∼ 0.5–2.5 Å). This leads to multiple scattering and so to many
interference peaks which carry information on the surface structure and allow its retrieval
with high accuracy. The diffraction pattern, which can be observed by a suitable detector,
reflects the translation symmetry of the surface structure. In order to obtain the individual
atomic positions, the intensity of different diffraction orders must be recorded as a function
of energy. Due to the multiple-scattering processes, a full-dynamical rather than a kinematic
scattering theory must be applied for the intensity analysis [5, 6]. The calculated spectra
of a physically meaningful surface model are compared to the experimental spectra using
a numerical ‘reliability factor’ [55, 56]. The model has to be modified until experimental
and theoretical spectra agree. Over the last two decades, the introduction of perturbation
methods [57, 58] opened up the possibility of applying LEED to, for example, complex alloy
surfaces [59], metal films [60] and metal–metal interfaces near the surface [61, 62]. The code
used in this work, called ‘TensErLEED’, was developed in Erlangen by Blum and Heinz [63].
By combining scattering theory, perturbation methods and a frustrated simulated annealing
procedure [64] ‘TensErLEED’ allows us to deal with huge parameter spaces. Since LEED
I (E) spectra are not only sensitive to the geometric position of atoms, but also to the chemical
composition [65] as well as vibrational amplitudes [66], the technique permits a detailed
characterization of alloy surfaces as well as correlations between surface segregation and
ordering [67].

3. Theoretical methods and procedures

3.1. Density functional and elasticity theory: tools for predicting alloy properties

First-principles calculations based on the density-functional approach have been very useful
in understanding the stability of simple single-phased materials. This includes calculations
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of perfectly ordered compounds [68] as well as perfectly random alloys [69, 70]. Since there
exist a number of excellent review articles [71, 72] and books [73–75] about DFT, only some
general remarks will be given here. DFT is based on the Hohenberg–Kohn theorem [2] stating
that the energy of a system of interacting electrons in an external potential depends only on the
ground-state electronic density. In our case, namely the investigation of solid structures, the
external potential is the Coulomb potential caused by the nuclei in a solid. The ground-state
density can, in principle, be calculated from a variation ansatz, i.e. without any Schrödinger
equation. However, for treating real problems the variational approach is impractical. Help
came in 1965 from Kohn and Sham [3] who showed that the density wanted is given by the
self-consistent solution of a set of single-particle equations, called Kohn–Sham equations:[

− h̄2

2m
∇2 + Ve−nuc(r) + VH(r) + VXC(r)

]
�i (r) = εi�i(r). (5)

In this Schrödinger-like equation, the first term on the left side represents the kinetic energy
operator, Ve−nuc is the Coulomb potential due to the nuclei, VH is the Hartree potential and
VXC is the exchange-correlation potential. The latter comes from replacing the kinetic energy
of interacting particles by that of non-interacting particles (which can be treated exactly)
plus a term containing all correlation and exchange effects (which is unknown, but small
compared to the other energy contributions). Well-known approximations for VXC are the
local density approximation (LDA) [76, 77] and the generalized gradient approximation
(GGA) [78]. In LDA, the energy density of the inhomogeneous system is approximated
by the density of the homogeneous electron gas which possesses exactly the same density as
the actual inhomogeneous system. Although this sounds like a very rough approximation,
especially for systems with strongly varying density, it works astonishing well for a huge
number of problems. In GGA, additionally the gradient of the density is considered which can
be important for systems where n(r) changes dramatically with r.

In practice, we can distinguish between more or less two different types of strategies:
methods using complex, but efficient, basis sets for the wavefunctions, such as the linearized
augmented plane-wave method (LAPW), and methods based on so-called PP using plane
waves as the basis set (for a survey see, for example, the book by Singh [79]). The concept
of PP is roughly that most physical properties of a solid are determined by the valence
electron structure. Then, the number of plane waves necessary to describe the system can
be tremendously decreased by replacing core electrons and ionic potential by a PP which is
energetically much weaker and corresponds to a node-free wavefunction. Thereby, the PP has
to fulfil the conditions that

(a) the scattering properties of the elements are conserved and
(b) outside the core region PP and the pseudo-wavefunction are identical to the corresponding

full potential and wavefunction.

Until some years ago, it was a very delicate task to study transition metals (TM) by ‘classical’,
norm-conserving PP [80, 81]. With the development of ultrasoft PP [82, 83] and,more recently,
so-called PAW potentials (‘projector augmented wave’) [84, 85] concepts from LAPW entered
into PP codes and allow for an accurate and fast treatment of practically all metal systems by
a plane-wave basis set.

Most calculations in this work use PP codes, namely parallel total energy (PEtot) [86] and
the Vienna ab initio simulation package (VASP) [87]. The latter was applied for all surface
calculations in this work. The LAPW method [88] was used to study the system Ag–Pd
(section 4.1) and for comparison with PP results.

While calculated total energies do not allow for a direct comparison with experimental
data, because the absolute energy values depend on the applied approach (e.g. LAPW or PP
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Table 1. Experimental [24] and theoretical formation enthalpies and lattice parameters for the
ordered B2 phase of FeAl, CoAl and NiAl.

System �H f (eV/atom) Lattice parameter (Å)

FeAl, B2 Exp. −0.26 2.862
FeAl, B2 DFT −0.30 2.879
CoAl, B2 Exp. −0.56 2.862
CoAl, B2 DFT −0.57 2.855
NiAl, B2 Exp. −0.64 2.887
NiAl, B2 DFT −0.66 2.898

ansatz), differences between them should not depend on the selected code within statistical
errors and errors due to the chosen approximations (e.g. LDA or GGA). One of the most
relevant physical properties of alloys, being essential for all our further studies, is the formation
enthalpy, �H f (σ ), per atom of an alloy structure σ . It is defined as the energy gain or loss
per atom with respect to the bulk constituents at their equilibrium lattice constants. For an
intermetallic compound AmBn (consisting of m A and n B atoms per unit cell) �H f is given
by

�H f (AmBn) = 1

m + n
[Etot(AmBn) − m · Etot

A (aA) − n · Etot
B (aB)]. (6)

Here, aA and aB are the equilibrium lattice constants of the elements A and B in their bulk,
and Etot

A (aA) and Etot
B (aB) are the respective total energies. Since all total energy values are

negative, a positive sign of �H f stands for phase separation, while a negative sign of �H f

means ordering. The total energy of the compound AmBn , Etot(AmBn), must correspond to
the geometrically fully relaxed configuration, i.e. the structure has to be optimized (consistent
with the symmetry of the structure) with respect to the aspect ratio of unit cell vectors, cell
internal atomic displacements and the volume of the unit cell. As is well known [89–91], the
consideration of relaxations is essential for a quantitatively correct calculation of energetic
properties such as, for example, phase stability. As an example, table 1 compares the result
of GGA calculations for formation enthalpy and lattice parameters of the B2 structure (CsCl
structure) of Co–Al, Ni–Al and Fe–Al with experimental data [24]. Within theoretical and
experimental uncertainties the values agree very well. Two points should be emphasized:

(i) All three enthalpies are negative, meaning that ordering is preferred over phase separation.
(ii) The energetic hierarchy in our calculations agrees perfectly with experiment. The B2

structure is most stable in Ni–Al and least stable in Fe–Al.

This result is even more important than the absolute values of �H f , because it demonstrates
the possibility of studying alloy problems which demand a comparison of the phase stability
between different systems by DFT calculations. It should be mentioned that the concept of
equation (6) also holds for disordered alloy structures A1−x Bx . Then, �H f (σ ) is called the
mixing enthalpy per atom of σ and is given by

�Hmix(σ ) = 1

N
Etot(A1−x Bx, σ ) − (1 − x)Etot

A (aA) − x Etot
B (aB) (7)

with N being the total number of atoms in the disordered alloy.
In order to understand the trends in formation enthalpies, one sometimes wishes to

decompose �H f (σ ) in characteristic energy portions as strain energy, containing information
about the elastic properties of the alloy, and chemical energy, containing information about the
strength of the different interaction energies between atoms. In section 4.3 we will see how this
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idea permits one to understand the size versus shape relation of characteristic microstructures
in metal alloys. Indeed, combining DFT with elasticity theory can help to calculate the strain
behaviour of metal alloys. Since strain is determined by the mechanical behaviour of the
system, we separate the two components by creating an interface in a well-defined orientation
between A and B atoms and demand that the whole system act as a pseudomorphic, epitaxial
system, i.e. there are no dislocations at the interface. The idea to compare a binary alloy with
an epitaxial film/substrate system allows us to specify two types of quantities [92]:

(i) The hydrostatic deformation energy �Ehydro
A (a) being the energy required to

hydrostatically deform the solid element A to the lattice constant a of the alloy.
(ii) The epitaxial strain energy �Eepi

A (a, Ĝ), representing the energy of the elemental solid A
epitaxially (or, biaxially) deformed to the ‘substrate’ lattice constant a in the two directions
orthogonal to Ĝ and relaxed along Ĝ.

The ratio of these two energies defines the epitaxial softening function [92, 93]

q(a, Ĝ) = �Eepi
A (a, Ĝ)

�Ehydro
A (a)

. (8)

Since it is always easier to deform a material epitaxially (biaxially) than hydrostatically
(triaxially), q � 1. Small values of q(a, Ĝ) indicate elastically soft directions Ĝ. As an
example, figure 4(b) shows calculated softening functions, q(a, Ĝ), for the fcc elements Al
and Cu along the crystal directions indicated in figure 4(a). Obviously, the crystallographic
order of elastic softness can change as a function of the lattice parameter. For example, an only
2% compression of Al (figure 4(b)) is softer along (110) than along (100), while at equilibrium
the opposite is true. This clearly indicates that, for a description of strain effects in metals, not
only the direction dependence of strain (anisotropic strain effects), but also the dependence of
strain on the lattice parameter (anharmonic strain effects) must be taken into account [95, 96].
In the harmonic elasticity theory, q depends only on the direction Ĝ, but not on the substrate
lattice constant a [90, 92, 97]:

qharm(Ĝ) = 1 − B

C11 + �γharm(Ĝ)
(9)

with bulk modulus B = 1
3 (C11 + 2C12) and anisotropy parameter � = C44 − 1

2 (C11 − C12).
The harmonic constants C11, C12 and C44 can be easily calculated from first-principles
calculations [92] and consequently, � and B , too. γharm is a geometric function of the spherical
angles 
 (polar angle) and � (azimuth angle) formed by Ĝ:

γharm(�,
) = sin2(2
) + sin4(
) sin2(2�) (10)

= 4

3

√
4π

[
K0(�,
) − 2√

21
K4(�,
)

]
.

Here, Kl is the cubic harmonic of angular moment l. If anharmonic effects become important
as in metal alloys, q additionally depends on the lattice parameter a:

γ (a, Ĝ) = γharm(Ĝ) +
lmax∑
l=0

bl(a)Kl(Ĝ). (11)

This equation now also includes higher-order cubic harmonics as necessary to go beyond the
harmonic approximation (more details are given by Ozolins et al [95]). Then, equation (9)
becomes

q(a, Ĝ) = 1 − B

C11 + �γ (a, Ĝ)
. (12)
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Figure 4. (a) Low index crystal orientations of the fcc lattice indicated by hatched areas.
(b) Epitaxial softening function q(a, Ĝ), equation (8), for Cu and Al calculated via LDA. The
shaded areas mark the lattice parameter range between the two components of the corresponding
alloy. Arrows denote the position of the equilibrium lattice constant aeq of each element. The lines
are drawn merely to guide the eye [94].

With q(a, Ĝ) resulting from DFT calculations as displayed in figure 4(b), the quantity γ (a, Ĝ)

can be taken from equation (12) and, in turn, the coefficients bl(a) results via equation (11). The
determination of bl(a) permits one to generalize calculated epitaxial energies, �Eepi

A (a, Ĝ)

for a discrete set of directions to arbitrary directions Ĝ.
We will apply it to parametrize the equilibrium constituent (or coherency) strain

energy �Eeq
CS(x, Ĝ) which is defined as the strain energy required to maintain coherence

between a ‘piece’ of material A and a ‘piece’ of material B along an interface with orientation
Ĝ. This structure represents a so-called superlattice (SL) AnBn along a certain direction Ĝ
with n → ∞. In practice, the calculated elemental epitaxial energies are used to determine
the constituent strain energy that is determined by the equilibrium value of the composition-
weighted sum of the epitaxial energies of A and B:

�Eeq
CS(x, Ĝ) = min

ap

[x�Eepi
A (ap, Ĝ) + (1 − x)�Eepi

B (ap, Ĝ)] (13)

where ap(x) is the lattice constant that minimizes �Eeq
CS at each x . The constituent strain can

be illustrated by a three-dimensional parametrization in terms of a sum of cubic harmonics, as
shown in figure 5 for three different Al concentrations of the system Al–Cu. Here, the distance
from the surface to the centre of the cube represents the strain energy in this crystallographic
direction. For Al0.1Cu0.9, we see that this distance is maximal along the body diagonal (marked
by a bold circle), i.e. the crystallographic [111] direction, whilst the distance is shortest along
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Figure 5. Parametric three-dimensional presentation of the constituent strain �Eeq
CS, equation (13),

of Al–Cu for compositions of 10, 50 and 90% Al. The distance from the surface to the centre of
the cube represents the amount of strain energy.

the square face diagonal (marked by a thin circle), i.e. the [110] direction. With increasing Al
composition the situation changes: Al0.5Cu0.5 owns the smallest constituent strain for [100],
while [111] is still the hardest direction. For 90% Al, the figure has a ‘depression’ in the very
soft [100] direction, but a protrusion in the hard [111] direction. As we will see next, the
concept of constituent strain is very important to describe morphological properties of alloys.

3.2. Bridging length scales and treating finite temperatures: cluster expansion and Monte
Carlo method

As discussed in section 2, the idea of CE [4] is to express the atomically relaxed energy, E(σ ),
of arbitrary lattice configurations σ on a given, underlying lattice as a linear sum of energies
characteristic of geometric figures, such as biatoms, triatoms, etc (see figure 3). To realize this
idea in practice we transform the ‘alloy problem’ to an Ising model. Each atom i of an A1−x Bx

alloy is assigned to a spin value Si = −1, if i is an A atom, and to Si = +1, if i is a B atom.
Then, the energy of each configuration can be expressed by an Ising expansion:

E(σ ) = J0 +
∑

i

Ji Si (σ ) +
∑
j<i

Ji j Si (σ )Sj (σ ) +
∑

k< j<i

Ji jk Si (σ )Sj (σ )Sk(σ ) + · · · . (14)

The first two terms on the right define the energy of the random alloy (with zero mutual
interactions), the third term contains all pair interactions, the fourth all three-body interactions,
etc. This equation can be brought to a compact form by introducing a correlation function �̄F

for each class of symmetry-equivalent figures F [44]:

�̄F (σ ) = 1

N DF

∑
f

Si1(σ )Si2(σ ) · · · Sim (σ ). (15)

Here, DF gives the number of figures of class F per site. The index f runs over the N DF figures
in class F and m denotes the number of sites of figure f . Then, equation (14) becomes [90]

E(σ ) = N
∑

F

DF�̄F (σ )JF . (16)

This ‘rewriting’ of equation (14), however, does not help to answer the question of how the
interactions JF of the system can be determined. As discussed by Zunger [44], one can follow
three different concepts to solve this problem:
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(i) An empirical fit of the interactions to experimentally determined features of the
corresponding alloy phase diagram is used [17, 18]. However, this access is limited to a
small number of interactions, while most alloy systems usually demand the consideration
of more than about 20 pair and 10 multi-body interactions for a quantitative description.

(ii) Ordered structures are treated as a perturbation of the random alloy modelled by the
virtual crystal approximation (VCA) [98] or the CPA [19, 20, 99–101]. Although this
access provides first-principles results (i.e. without the use of fitting procedures), it is
limited to alloys consisting of similar constituents in the sense that first-order perturbation
theory is valid, and is only practical for calculating pair interactions.

(iii) The direct inversion method by Conolly and Williams [102] is applied.

For a set (about 15–40) of Nσ mostly simple ordered compounds with typically no more
than 2–16 basis atoms the energies EDFT of the geometrically relaxed structures are calculated
via DFT. Then, the Nσ energies are used to construct NF interactions JF by solving

Nσ∑
ωσ

∣∣∣∣EDFT(σ ) − N
NF∑

DF JF�̄F (σ )

∣∣∣∣
2

= Minimum (17)

with respect to the NF values of JF . Here, ωσ are weight factors which can be chosen, for
example, as determined by the number of conserved point group operations of configuration σ

in the way that the highest weight is attributed to the least symmetric configurations, since they
should contain more distinct environments than the high-symmetry configurations. Naturally,
NF � Nσ in order to prohibit an overestimation of the interactions. The finally resulting set
of JF ’s has to pass a number of tests before it can be applied to physical problems [103]:

(i) Stability of interactions: a certain interaction is only negligible for the CE fit if its
consideration or neglect does not change the modulus and sign of all other interactions
used. Otherwise, this interaction is essential for the stability of the CE. The same argument
holds for adding or removing the energy, EDFT, of one structure σ to the set of energies
used to construct the effective interactions JF . Again, the pair and multi-body interactions
should not change more than a few millielectronvolts.

(ii) Energy prediction of geometrically relaxed structures: the interactions fitted by the
minimization must be able to predict the energy, E(σ ), of a structure σ which was not used
for the fit. This can be easily checked by calculating the DFT energies of some arbitrary
ordered compounds and comparing them with those obtained from the CE. Furthermore,
a certain input structure σ is essential for the CE construction, if its removing leads to a
drastic increase of the minimum on the right side of equation (17) for any of the remaining
Nσ − 1 structures.

Indeed, a reasonable selection of the input structures is a delicate task and needs some
experience. One efficient tool to find structures with important ‘structure information’ for
the determination of the interactions is a ground-state search [104, 105] in the early stage of
the construction. For a ‘starting set’ of about 20 DFT energies of arbitrary input structures,
a CE fit is performed. The resulting interactions are then used to predict the energy of all
possible structures with, for example, up to 16 atoms per unit cell (the latter is indeed a very
reasonable restriction, since most known stable structures in binary metal alloys own clearly
less than 16 atoms per unit cell). Such an analysis based on equation (16) takes only a few hours
on a high-performance PC. Afterwards, the corresponding CE formation enthalpies, �H f , of
all structures are plotted as a function of composition and a ground-state line is constructed.
This is schematically shown in figure 6: An individual structure σ only contributes to the
ground-state line if the linear energy average between the stable structures at the next highest
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Figure 6. Schematic ground-state diagram of a binary alloy A1−x Bx . The ground-state line
was constructed from 60 energies of relaxed structures (given by dots) by use of equation (18).
Besides the pure elemental crystal the ground-state line is formed by three structures α, σ and β

for concentrations x = 0.25, 0.50 and 0.75, respectively. If σ would lie energetically above the
broken tie line between α and β, a mixture of α and β would be more stable than σ .

and lowest concentration is energetically less favourable than the formation enthalpy of σ .
More precisely, for three structures α, σ and β with x(α) < x(σ ) < x(β) which are the lowest
in energy for their individual concentrations, the structure σ has to fulfil the condition

�H f (σ ) <
x(σ ) − x(β)

x(α) − x(β)
�H f (α) +

x(σ ) − x(α)

x(β) − x(α)
�H f (β) (18)

in order to be the ground state at x(σ ). If equation (18) holds, a mixture of the phases α and β

would be higher in energy than structure σ . With the ground-state line constructed, we check
for all structures which lie on or very close to it (so-called ‘excited states’) whether they were
already considered as input structures for the CE. If not, their DFT energy is calculated and
added to the input-structure set, while input structures with �H values far above the ground-
state line are removed from the original input structure list. The procedure is repeated until
the ground-state line becomes stable. Examples for ground-state diagrams will be discussed
in section 4.1.

There remains, however, a very critical point: as shown by Laks et al [90], any CE in
real space fails to predict the energy of long periodic coherent SLs. For a given SL AnBn ,
equation (16) predicts a formation enthalpy �H f = 0 as n → ∞. This indeed is an intrinsic
fault of any finite CE and is easy to understand: if we consider an A atom of an AnBn SL
‘far’ away from the A/B interface so that all figures f connect the A atom exclusively to other
A atoms, then the finite CE interprets the A atom as a bulk crystal atom and consequently
�H f = 0. However, as discussed in section 3.1, the formation enthalpy of an infinite SL
should be defined as the equilibrium constituent strain energy, because in the limit n → ∞
the SL formation enthalpy depends only on its strained constituents, and not on the interface
properties. The problem can be solved [44, 90] by transforming a group of interactions to the
reciprocal space and adding the constituent strain term explicitly. This is easiest to do for the
pair interactions. For this, we introduce the Fourier transform of real-space pair interactions,
Jpair (k), and the structure factor S(k, σ ):

Jpair (k) =
∑

j

Jpair (Ri − R j) exp (−ikR j) (19)
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S(k, σ ) =
∑

j

S j exp (−ikR j ). (20)

Then the formation enthalpies for any arbitrary atomically relaxed configuration σ are
expressed by [44]

�HCE(σ ) =
∑

k

Jpair (k)|S(k, σ )|2 +
∑

F

DF JF�̄F (σ ) + �ECS(σ ). (21)

This solution was introduced by Zunger and co-workers [44, 90] and is called mixed-space
cluster expansion (MSCE). The first term includes all pair figures in k space. The second term
represents many-body interactions and runs over symmetry inequivalent clusters consisting of
three or more lattice sites. It also includes J0 and J1 from equation (14). DF again stands
for the number of equivalent clusters per lattice site and �̄F (σ ) are the structure-dependent
geometrical coefficients given by equation (15). The last term represents the constituent strain
energy of the structure σ , �ECS(σ ), and can be calculated by expanding the equilibrium
constituent strain energy (equation (13)), �Eeq

CS(x, k̂), as [90, 106]

�ECS(σ ) =
∑

k

JCS(x, k̂)|S(k, σ )|2 (22)

with

JCS(x, k̂) = �Eeq
CS(x, k̂)

4x(1 − x)
. (23)

Now, JCS contains the correct long-periodic SL limit, namely the constituent strain energy2.
Analogous to the real-space expansion, equation (16), we need the formation enthalpies

�H f (AmBn) of ordered compounds as input to determine the sets of coefficients {Jpair(k)},
and {J f } of the CE. The pair and multi-body interactions results by the fit to the Nσ formation
enthalpies {�H f }, minimizing the root mean square (rms) error [44]:

�2
rms = 1

Nσ

∑
σ

wσ [�HCE(σ ) − �HLDA(σ )]2 +
t

α

∑
k

Jpair (k)[−∇2
k]λ/2 Jpair(k) = min

(24)

where λ (even) and t are free parameters and α is a normalization constant [90]. The second
term on the right, i.e. the k-space smoothness criterion, automatically selects essential short-
ranged pair interactions. After equation (24) was applied to the pair interactions,a large number
of different sets of three- and four-body figures is tested for whether it improves the rms error
of the overall fit. An individual multi-body interaction is only added to the fit if it clearly
decreases �rms. Table 2 shows the Nσ = 25 input formation enthalpies �H f (‘direct’) and the
via MSCE fitted enthalpies (‘CE’) for Al–Zn. All enthalpies with an asterisk denote structures
not used in the fit, i.e. they present ‘real’ predictions. The table gives the stoichiometry of
all used input structures as well as the information whether the structures possess a SL of
Al and Zn layers along a certain direction. For example, V 3 is defined by an AlZn3 SL in
the [111] direction. So, there are always three Zn(111) layers followed by one Al(111) layer.
The average error of fitting Nσ = 25 enthalpies is 1.5 meV whereas the resulting prediction
error for the 9 structures not used for the fit is 2.2 meV. Figure 7 gives the resulting pair and
multi-body interactions for the system Al–Zn. It can be seen that pair interactions converge
rapidly, so that consideration of 15–20 pair interactions is sufficient.

2 It has been found [106] that attenuating the constituent strain term can be important in strongly anharmonic, ordering
type systems. This is realized by an exponential damping function. However, since attenuating the constituent strain
has no significant effect on the systems considered in this paper, this will not be discussed here.
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Table 2. Formation enthalpies of Al–Zn structures determined via DFT calculations (‘direct’)
and CE. The compounds are sorted by SL direction and composition. Compounds marked by an
asterisk did not enter the input of the CE fit, but represent predictions. While the ‘average error’
gives the standard deviation of CE formation enthalpies of input structures, the ‘average prediction
error’ represents the standard deviation of all predicted structures. The ‘maximum error’ is the
largest deviation between the CE and LDA values of the structures considered [94]. MSCE for
AIZN. Average error (CE, 25 structures): 1.5 meV; average prediction error (9 predictions ∗):
2.2 meV; maximum error: 4.1 meV.

Formation enthalpies (meV/atom) for direction

Stoichiometry xAl [100] [110] [111] [201] [311] Others

Zn 0.0 fcc
direct: 0.0
CE: 0.6

AlZn3 0.25 Y3∗ V3 D022b W3 L12

direct: 24.8 4.3 13.3 9.0 5.3
CE: 24.2 3.7 12.5 11.0 9.2
AlZn2 0.333 β2 γ 2 α2
direct: 14.9 17.7 2.0
CE: 18.3 21.3 3.3

Al2Zn3 0.40 Z7∗
direct: 7.0
CE: 7.2

AlZn 0.50 L10 L11

direct: 23.5 7.4
CE: 26.9 9.9

Al2Zn2 0.50 Z2 Y2 V2 CH(40) W2
direct: 9.0 24.6 4.8 24.8 18.6
CE: 9.6 26.8 7.3 28.8 22.3

Al3Zn3 0.50 Z6∗ Y6∗ V6
direct: 6.2 18.8 2.8
CE: 5.7 16.4 3.2

Al4Zn4 0.50 V8∗ SQS8∗
direct: 1.8 18.4
CE: 1.7 20.9

Al3Zn 0.60 Z5∗
direct 6.0
CE: 6.2

Al2Zn 0.667 β1 γ 1 α1
direct: 17.4 32.6 15.9
CE: 20.4 33.7 16.7

Al3Zn 0.75 Z1 Y1∗ V1 D022 a W1∗ L12

direct: 10.2 26.0 14.6 27.6 23.0 35.1
CE: 14.1 27.2 12.7 31.6 25.8 34.9

Al7Zn 0.875 D7
direct: 10.7
CE: 12.4

Al 1.00 fcc
direct: 0.0
CE: −0.6
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Figure 7. Pair and multi-body effective cluster interactions for Al–Zn deduced from the fit of
table 2. The symbols characterize individual multi-body interactions: ‘3’ stands for three- and
‘4’ for four-body interactions. In general, the distance between atoms increases with the letter,
i.e. for example, ‘J’ means only nearest neighbours, ‘K’ nearest neighbours and one second nearest
neighbour, etc.

As example for the energetic behaviour of long-periodic superstructures, figure 8 shows
via MSCE calculated interfacial energies of AlnZnn SL as a function of period length n for
five different crystal orientations. Hereby, the interfacial energy per atom is defined as

I (n, Ĝ) = 1
2 (�H SL

f (n, Ĝ) − �Eeq
CS(x = 0.5, Ĝ)) (25)

where the factor 1
2 results from the fact that there are two interfaces. It can be seen that, for

small n, the interfacial energies are not only direction-dependent, but also depend on n. In
other words, the chemical interactions at the interfaces dominate the interfacial energy. This
effect can, for example, be of importance for ultrathin sandwich films in multi-layer systems.
With increasing n the influence of the interfaces on the interfacial energy disappears. I (n, Ĝ)

is now determined by the direction-dependent strain energy necessary to maintain coherence
between the blocks of Al and Zn layers.

For finite-temperature studies, equation (21) can be used in MC simulations. The code
we applied for studying thermodynamic properties is a simple Metropolis algorithm [107]
allowing for flipping pairs of A and B atoms in an arbitrary distance with the aim of reaching
the equilibrium configuration as fast as possible. The procedure is as follows:

(i) Select randomly a pair of A and B atoms.
(ii) Calculate the energy difference δE caused by exchanging the two atoms. If δE < 0, flip

the two spins; if δE > 0, flip the two spins with a probability of exp(−δE/kT ) (again, E
is obtained from equation (21)).

(iii) Go to 1.

Besides the temperature dependence of the alloy’s free energy, MC simulations can be used to
calculate coherent phase boundaries in the phase diagram. Following the fluctuation-response
theorem [108], the specific heat cv of the system at a certain temperature can be calculated by
the fact that cv is proportional to the equilibrium fluctuations of the energy, 〈E2〉−〈E〉2. Since
the energy exhibits a point of inflection for a second-order phase transition at the transition
temperature Ttrans, its response function cv = (∂ E/∂T )v has a maximum at Ttrans. Although
a phase transition is—strictly speaking—only defined for an infinite system, one usually also
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speaks of a phase transition of a finite system, given by the maximum of cv at the transition
temperature. If the MC simulations are applied for different concentrations x , the resulting
Ttrans values can be used to construct the coherent phase boundary of a system.

Another important application of MC simulations is the prediction of the system’s ordering.
Of special interest are SRO effects in disordered alloys which can quantitatively expressed in
terms of SRO parameters, as introduced in section 2. For this, we rewrite equation (3) in the
equivalent form

αlmn(x) = 1 − PA(B)

lmn

x
(26)

where PA(B)

lmn is the conditional probability that, given an A atom at the origin, there is a B atom
at (lmn). For comparison with experimental data, the so-called ‘shells’ lmn are introduced
which are defined by the distance between A and B atoms in terms of half-lattice parameters,
(l a

2 , m a
2 , n a

2 ), e.g. for an fcc lattice the nearest-neighbour distance would be described by the
shell (110), the second-nearest-neighbour distance by (200) and so on. As already mentioned,
the sign of α indicates whether atoms in a given shell prefer to order (α < 0) or cluster (α > 0).
The SRO parameter may be written in terms of the CE pair correlations as [95]

αlmn(x) = 〈�̄lmn〉 − q2

1 − q2
(27)

where q = 2x − 1 and 〈�̄lmn〉 is the pair correlation function, equation (15), for the shell
(lmn). In diffraction experiments the diffuse scattering due to SRO is proportional to the
lattice Fourier transform of αlmn(x) [34, 35]:

α(x,k) =
nR∑

lmn

αlmn(x)ei·k·Rlmn (28)

where nR stands for the number of real space shells used in the transform. Equation (27)
together with (28) opens the possibility of comparing both, experimental and theoretically
predicted diffuse diffraction patterns (reciprocal space) and SRO parameters (real space). This
concept will be applied in section 4.2 to understand SRO phenomena in binary metal alloys
quantitatively.
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time

Figure 9. Schematic crystal plane of an A1−x Bx alloy with characteristic islands formed by B
(black) atoms during the ageing process.

3.3. Beyond thermodynamics: simulation of dynamic processes

The kinetic MC method [43, 109, 110] is one of the most successful approaches to describe
diffusion, growth and microstructure evolution in alloy systems [111]. Different approaches for
describing shape evolutions of microstructures in alloys are used, such as the Onsager equation
in mean-field approximation [112–114], a microscopic mean-field kinetic equation [115],
the stochastic field method [116] or the discrete atom method [117–119]. In contrast to
such continuum models that require a knowledge of the energy surface for arbitrary atomic
configurations, we now use the discussed ‘MSCE plus MC’ combination to investigate the
time evolution of characteristic microstructures in binary alloys, the so-called precipitates.

Perhaps the best-known examples of heterogeneous phase coexistence are phase separa-
tion of an alloy into its constituents [24] A1−x Bx � (1 − x)A + xB or into a constituent plus
a compound [24], e.g. A1−x Bx � A3B + A. Such solid state decomposition reactions create
precipitates which represent an important part of the microstructure of many alloy systems.
The early stage of these reactions typically involves the formation of coherent precipitates that
adopt the crystallographic lattice of the alloy from which they emerge [120]. Because of their
practical importance (see sections 4.3 and 4.4), the time evolution of the precipitates’ sizes
and shapes is of interest, too. In this section, we will introduce two kinetic MC algorithms,
again based on the MSCE Hamiltonian, equation (21). Figure 9 demonstrates the situation by
a simplified two-dimensional presentation: a quenched solid solution (left frame) is aged at
a certain temperature (e.g. room temperature). During this ageing process islands are formed
(right frame) which may show a characteristic size and shape distribution (we assume that the
islands are formed by black B atoms in an A-rich A1−x Bx alloy). The question is whether the
distribution of these islands as a function of ageing time can be calculated from first principles.

As already mentioned, our main focus is on the distribution of the islands as a function
of temperature and ageing time; the path of an individual B atom through the crystal is less
interesting. Therefore, we make the following assumptions:

(i) The islands are formed by nearest-neighbour site flips only and not by continuous
atomic motion. The energies ECE(σ ) before and after spin flips always correspond to
geometrically fully relaxed configurations. This is guaranteed by the MSCE Hamiltonian,
equation (21).

(ii) Our model does not consider vacancies. This assumption is motivated by the fact that,
for a correct calculation of the precipitate distribution, the detailed exchange process does
not play much of a role as long as the time constant for the exchange process is known.
(In bulk crystals the exchange of A and B atoms is based on a three-particle process with
a vacancy as the third particle.)

(iii) Additional to the energy difference between two neighbouring sites occupied with
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Figure 10. Basic assumption in our simulations: while the energy difference between two
neighbouring atoms can be easily calculated from the MSCE, an average and temperature-dependent
activation barrier is calculated from experimental, temperature-dependent diffusion data.

dissimilar atoms, the activation barrier for the exchange has to be taken into account
as schematically shown in figure 10. It is possible to compute diffusion coefficients from
first principles, but this can be complicated and time-consuming.

Instead, the energy barriers between different configurations are taken from experiment: the
frequency 1/τ0 for the exchange process as a function of temperature T can be deduced from
the experimental diffusion constant [28] Dexp(T ) via

τ0(T ) = a2
nn

Dexp(T )
, (29)

where ann is the average nearest-neighbour distance between atoms. Although this might
appear as a very rough approximation, Dexp(T ) contains the real ‘average’ energy barrier, and
therefore the exchange frequency implicitly contains this information too. It should be noted
that this approximation pertains only to the activation barrier and not to the configurational
energy (figure 10), E(σ ), given by the MSCE of equation (21).

Two types of algorithms were constructed which we may call ‘algorithm I’ and ‘algorithm
II’ in the following. Algorithm I (described here for A-rich A–B alloys) has the following
simple structure:

(i) Find all N atoms of B in a random configuration, order them by site indices and select the
B atom with the lowest site index.

(ii) Determine how many of its neighbours are A atoms.
(iii) Select an arbitrary one of the A neighbours.
(iv) If the energy difference δE caused by exchanging the two atoms is δE < 0, flip the two

spins, but if δE > 0, flip the two spins with a probability of exp(−δE/kT ). Here, δE
is obtained from equation (21) (given by the difference of the formation enthalpies of the
structures before and after the spin flips). Note that this energy results with all atoms
relaxed and so corresponds to the (local) energy minimum of the configuration σ .

(v) Repeat steps 2–4 for all B atoms.
(vi) Use equation (29) to transfer 1 MCS into ‘real time’.

(vii) Go to point 1.

In this algorithm, one Monte Carlo step (MCS) is defined as ‘one trial for each B atom to
switch site with a neighbouring A atom’. The advantages of this algorithm are:

(i) B atoms are not chosen randomly: instead each B atom has the chance to ‘jump’ once
per MCS. Therefore, the exchange processes of different B atoms with A atoms are as
simultaneous as possible.
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(ii) One MCS represents a constant time interval, i.e. MC time and real time are linearly
related.

The disadvantage of the algorithm is its inefficiency when most of the B atoms are already
attached to one of the islands, as in the right frame of figure 9. Since precipitation is a phase-
separating process, the probability that any B atom will ever move again, i.e. leave the island
to which it is already attached, becomes very low. Especially at low temperatures, B atoms at
the interface between B islands and the A matrix will practically never leave this area.

Possible solutions for this problem could be: (a) cluster algorithms, or (b) enforcing the
exchange process. Cluster algorithms [121, 122] are based on the idea that forming a cluster
consisting of many spins first and flipping them simultaneously is less time-consuming than
flipping individual spins. However, such algorithms would not be very efficient, when the
formation of large clusters is very computer-time-consuming, but the probability for flipping
them is very low. In this case, the flip is rejected for many clusters. This is exactly the situation
encountered in phase-separating systems.

The main problem of forcing a B atom to leave the island boundary (method (b)) is that it
will most likely return to the island boundary in the next MCS (because the probability is very
high for this). Forbidding this second step in the simulation leads to a non-Markovian process,
which demands a complex re-consideration of the relation between the experimental diffusion
constant and the computer time unit ‘MCS’. Furthermore, the question arises, for how many
MCS the ‘returning’ event has to be forbidden. Even if we do not allow for a certain B atom to
return to the island in MCS step j , following the removal in MCS step j − 1, it is very likely
that this ‘returning’ event will happen in MCS step j + 1. The best solution for this problem
seems to be an algorithm where the selected B atom is forced to jump without destroying the
Markovian process [47]. This is realized in the following algorithm (‘algorithm II’):

(i) Find all of the N atoms of B in a random configuration and order them by site indices.
(ii) Determine all possible jumps S for each of the N atoms of B (for an fcc lattice Smax = 12N ,

when all B atoms only have A atoms as neighbours).
(iii) Calculate the energy change δE(i) for allallowed ‘jumps’ for every B atom (i = 1, . . . , S).
(iv) If δE(i) > 0, calculate Wi = (1/τ0) exp(−δE(i)/kT ). If δE(i) < 0, calculate

Wi = 1/τ0. Do this for all allowed ‘jumps’, i = 1, . . . , S (use equation (29) to calculate
τ0).

(v) Calculate Pi = Wi/Wtot, where Wtot = ∑S
i=1 Wi .

(vi) Select randomly one jump i from the S possible events according to their probability Pi .
(vii) Calculate the new total simulation time tMCS = tMCS−1 + 1/Wtot. (Note that Wtot =∑S

i=1 Wi is not a constant, but is different for each MCS. So, recording tMCS after each
MCS is a ‘must’.)

(viii) Recalculate all δE(i)’s.
(ix) Return to step 4.

The efficiency of this method strongly depends on whether the calculation of the new δE(i)’s
(step 8) is time-intensive. An accepted spin flip demands a recalculation of S(k, σ ) in
equation (21). However, as shown by Lu et al [89], the MSCE method allows us to avoid
the necessity of recalculating S(k, σ ) after each move by directly calculating the change in
Jpair(k)|S(k, σ )|2 for each move in real space [89]. In practice, algorithm II is clearly slower
for short ageing times and high temperatures, i.e. when most of the spin flips are accepted.
The advantage of algorithm II lies in the simulation of long ageing times: as we can see from
step 4 of the algorithm, a single MCS is now not longer a constant real time unit, but depends
on the corresponding probability Wtot . In practice, one MCS can now represent real times of
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Thermodynamic-MC Kinetic-MC

Figure 11. Comparison between equilibrium configurations for an Al0.92Zn0.08 alloy (T = 300 K)
resulting from thermodynamic and kinetic MC simulations (only Zn atoms are shown) [47].

1/1000 s up to many minutes. As a rough rule, we can conclude that algorithm II is to be
preferred if one MCS corresponds to a real time of about 1 s.

In algorithm II a single MCS corresponds indeed to only a single exchange of one B atom
with one A atom and not to one trial flip for each B atom. Since the ‘flip channel’ i is always
chosen randomly and mostly a large number of B atoms (typically 103–105) is considered
to describe real ageing processes, the probability that the same B atom is chosen in MCS
step i , when it was already chosen in MCS step i − 1 is extremely small. So, due to the large
system size it is not necessary to forbid certain exchanges between A and B atoms, i.e. we
do not have to give up the restriction that the algorithm should be based on the Markovian
process. The concept of algorithm II is strongly related to that of the so-called ‘residence-time
algorithm’ [110], where one transition is performed at each MCS, too. Different to the work of
Soisson et al [123], who applied such an algorithm to study Cu precipitation in Fe–Cu alloys,
our model does not consider any vacancy jump mechanism. However, the configurational part
of the energy is treated with DFT accuracy. Our present kinetic simulations are restricted to
nearest-neighbour ‘jumps’ only. Though this will probably not work generally, it was already
successfully applied in the literature [117]. For certain applications, an extension to second-,
third- and further nearest-neighbour exchange processes may be needed.

Both algorithms fulfil the condition of detailed balance which guarantees the convergence
of the Markovian chain [124]. Although the kinetic MC algorithms are not suitable for
studying equilibrium configurations (indeed, it takes about an order of magnitude longer to
reach equilibrium via kinetic MC than via thermodynamic MC algorithms), the calculations
of an equilibrium configuration are an important test regarding the validity of the developed
kinetic MC algorithms. As an example [47] for the kinetic MC versus thermodynamic MC
comparison, figure 11 shows the result for an fcc-based Al0.92Zn0.08 alloy embedded in a
30 × 30 × 30 MC cell at T = 300 K where the three-dimensional precipitates consist of
Zn atoms only (therefore, in figure 11 only Zn atoms are shown). The predicted precipitate
shapes resulting from kinetic MC and thermodynamic MC agree very well (a more quantitative
comparison can be found in [47]). In section 4.4 we will see how the algorithms developed
permit one to investigate real, three-dimensional, ageing processes in binary metal alloys.

3.4. How to study surfaces. . .

As already discussed in section 2, a successful description of alloy surfaces demands the
consideration of surface-specific phenomena. These are:
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Table 3. Surface energies of fcc-Al and fcc-Zn. For all three considered orientations, fcc-Zn has
the lower surface energy.

�Esur f (eV/atom)
Surface
orientation Al fcc-Zn

(100) 0.55 0.54
(110) 0.83 0.64
(111) 0.42 0.25

(i) Multi-layer relaxations: distances between near-surface layers can profoundly differ from
the bulk layer spacing.

(ii) Surface segregation: the chemical composition in the first few layers may strongly deviate
from the bulk concentration.

(iii) Surface reconstruction: the enrichment of one component near the surface may lead to
the formation of a superstructure (ma1 × na2), with a1 and a2 being the in-plane lattice
vectors of the unreconstructed surface and m, n are integers. Such superstructures can be
generated by long-range ordering of different atomic species (‘chemical superstructure’)
or by buckling of atoms (‘geometric superstructure’). This buckling can also be statistical
in the sense that unlike atoms within a single layer are above or below the average layer
plane, but no LRO can be observed.

(iv) Order–disorder transition: bulk and surface ordering can be completely different. It is, for
example, possible that the bulk structure is a disordered alloy, while the surface structure
exhibits lateral LRO. Even if both surface and bulk represent disordered alloys, their SRO
behaviour can be different.

We will now transfer our theoretical concepts discussed above to surfaces. This includes
(a) DFT as well as (b) CE and MC simulations. Furthermore, the possibility of verifying our
calculations by (c) LEED intensity analyses is introduced.

(a) DFT at surfaces. In the last few years, DFT calculations have become more and more
important in understanding the electronic and structural properties of surfaces, from pure
elements [125–128] and adsorbate systems [129, 130] to epitaxial films [131–133] and alloy
surfaces [51]. Although the main activities were in the field of semiconductor surfaces, the
development of efficient computer codes and faster computers today permit us to treat very
complex metal and alloy surfaces requiring model systems containing up to about 200 metal
atoms. This even allows us to study grain boundaries (see section 5.3).

The most common model in first-principles calculations to describe surfaces is the use
of repeated, periodic slabs: first, a bulk-like crystal consisting of Nbulk atoms is formed by
stacking atomic layers normal to the surface of interest. For this model, a DFT calculation is
performed. The resulting total energy of the system, Ebulk

tot , represents the reference energy.
Next, a certain number of layers are removed so that a slab consisting of Nsurf atoms with two
vacuum/solid interfaces emerges. The structure at this ‘interface’ has to be relaxed in the DFT
calculation, yielding E surf

tot . Then, the surface energy, i.e. the energy necessary to create the
surface of a pure-element crystal, is given as

�Esurf = 1

2

(
E surf

tot − Nsurf

Nbulk
Ebulk

tot

)
. (30)

The factor 1
2 takes the two surfaces into account. Naturally, the number of layers and removed

layers has to be increased until �Esurf remains unchanged. Because it always costs energy
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to create a surface, �Esurf > 0. As an example, table 3 gives the surface energies per atom
for the three low index surfaces of fcc-Al and fcc-Zn. Although Zn normally possesses the
hcp structure, the calculations for Zn were performed for fcc-Zn, because in Al–Zn alloys (see
section 4.3) Zn is forced to crystallize on the fcc lattice and therefore the properties of fcc-Zn
are important for investigating the Al–Zn alloy system. From the surface energies of the pure
elements, we may already guess that, especially for Al–Zn(111) surfaces, Zn will probably
segregate to the alloy surface because of its very low surface energy as compared to Al(111).
While a guess on such simple grounds may be valid for phase-separating systems when
clustering is preferred at the surface, it may totally fail for ordering systems because interactions
between unlike atoms are totally ignored. As an example, in section 5 Co0.5Al0.5(100) surfaces
are discussed where the bulk forms an intermetallic compound, namely the B2 structure. This
structure can be described by alternating Co and Al layers along the [100] direction. For this
system, a small surplus ε of Co atoms (called ‘defect atoms’ or ‘antisites’, because they have to
occupy sites of the Al sublattice) in a Co0.5+εAl0.5−ε alloy leads to the segregation of Co antisites
to the Al-terminated alloy surface, although Al has the lower surface energy. For such surfaces,
the interactions between neighbouring like and unlike atoms will certainly strongly influence
the properties of the alloy surface. In order to take those interactions into account, we introduce
the following two quantities: the surface energy of the alloy is defined analogous to that of the
pure element as the difference between the energy of the alloy surface slab, Etot(NA

surf , NB
surf )

(with NA(B)
sur f being the number of A and B atoms in the surface slab) and the corresponding

volume slabs, Etot(NA(B)

bulk ) (with NA(B)

bulk being the number of A and B atoms in the bulk), of the
pure materials. From this difference, the formation enthalpy �H f (AB, N A

bulk , N B
bulk ) of the

stable bulk phase (e.g. the B2 structure for Co–Al) has to be subtracted:

�Esurf = 1

2Nsurf

(
Etot(NA

surf , NB
surf ) − NA

surf

NA
bulk

Etot(NA
bulk)

− NB
surf

NB
bulk

Etot(NB
bulk) − �H f (AB, NA

bulk, NB
bulk)

)
. (31)

Nsurf stands for the number of atoms in the surface unit cell. Although this definition accounts
for interactions between A and B atoms, the resulting surface energy refers to the surface of a
perfectly ordered compound, namely one characterized by the subtracted formation enthalpy,
�H f (here, the B2 structure). In reality, however, the energetic situation is much more
complex: the formation of the segregation profile demands the transport of individual atoms
(e.g. Co antisites in Co–Al) from the bulk to the surface and vice versa. More specifically, the
energy to replace an A atom at the surface by a B atom from the bulk comes into play. This
energy is called the segregation energy:

�Eseg = Etot(NA
surf − 2, NB

surf + 2)

2
− Etot(NA

surf , NB
surf )

2
(32)

+ Ebulk
tot (NA

bulk, NB
bulk) − Ebulk

tot (NA
bulk − 1, NB

bulk + 1).

The individual terms in this equation need some more explanation: Etot(NA
surf , NB

surf ) gives
the energy of the bulk-like terminated alloy surface, i.e. with no antisite in the bulk or at the
surface. Now, we repeat the calculation with an antisite of atom type B in the topmost alloy
layer. Since there are two surfaces, the total number of A atoms in the surface slab decreases
by 2 atoms, while the number of B atoms increases by 2 atoms. The difference between
the energies with and without an antisite determines whether the stability of the surfaces is
decreased or increased by the antisite. However, the same energy balance has to be made
for the bulk, i.e. the bulk energies with and without an antisite have to be compared (since
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for Co–Al(100) our DFT model consists of an odd number of atomic (100) layers in order to
conserve the point symmetry of the slab, there is only a single antisite in the centred layer).
So, the segregation energy determines whether antisites segregate to the surface or remain in
the bulk. The difference in bulk energies with and without an antisite is also known as antisite
energy:

�EAS = Ebulk
tot (NA

bulk − 1, NB
bulk + 1) − Ebulk

tot (NA
bulk, NB

bulk). (33)

Segregation energies of binary alloys will be discussed in section 5.1.

(b) Surface CE and MC. The problem with the definition of the segregation energy,
equation (33), comes from the fact that it describes the energetics of all atoms in some average
environment. Although this approximation is certainly correct when the segregating species
prefers to occupy a certain atomic site in the surface layer, it will probably fail to describe
quantitatively the segregation profile of disordered alloys at finite temperatures. Then the
energy of an atom at the surface depends on its particular structural environment. So, for
many alloy surfaces SRO must be considered which again demands, analogous to the bulk
alloy, the consideration of a large number of atoms per layer. This can be done by extending
the combination of bulk CE and MC methods to surfaces. For this, we have to regard that
the symmetry at the surface is reduced compared to the bulk. Consequently, the number of
geometrically different figures, for which effective interactions are constructed, will increase.
For this reason, a larger number of input structures is needed to stabilize the surface interactions
compared to the bulk. It is, however, possible to circumvent a part of this problem by treating
the surface interactions as a correction of the bulk interactions. Since energies are additive,
we may write

�H CE
f = �H vol

f + �H surf
f . (34)

For the volume CE, �H vol
f , the mixed-space presentation, equation (21), may be used. Since

most segregation profiles are restricted to a very small number of surface layers, a real-space
presentation can be applied for the surface part, as successfully demonstrated by Drautz
et al [51] for Ni-rich Ni–Al surfaces. The advantage in treating the surface interactions as
‘perturbations’ of the bulk interactions comes from the fact that the DFT calculations for
different surface terminations (SRO models) and segregation profiles must not consider an
infinite bulk reservoir. We only have to make sure that the DFT slab model is thick enough that
the centre layer of the slab becomes bulk-like. For example, in the case of Co–Al already nine
layer thick surface slabs are sufficient, because the layer distances between layers number 4
and 5 and layers number 5 and 6 are bulk-like for the geometrically relaxed slab. For the
real-space CE presentation the energy of a structure σ can then be written as

E(σ ) =
N∑

i=1

{ NF∑
�̄F (σ )DF JF +

N ′
F∑

�̄′
F (Ri)D′

F (Ri)δ JF (Ri)

}
. (35)

We see that for the surface part the interactions become site-dependent. Here, Ri defines
the position of the atom i with respect to the alloy surface. So, for an atom i within the
segregation profile, every individual interaction J f to neighbouring atoms will be corrected
to J f + δ J f (Ri). Naturally, with increasing distance from the alloy surface, δ J f → 0 and
consequently the surface term in equation (35) becomes zero. The extended Hamiltonian
can now again be used in MC simulations. Analogous to the bulk calculations, we choose a
random configuration as the starting point and determine the segregation profile as a function
of temperature by MC simulated annealing. Since the concept of CE allows us to treat large
systems (see section 3.2), the number of atoms per layer can be chosen large enough (e.g. 5000
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atoms per layer) to make layer-dependentSRO phenomena visible. A layer-dependentanalysis
of SRO allows for studying correlations between ordering and segregation. This combination
of surface CE and MC permits us to study surface segregation for geometrically fully relaxed
surfaces by purely quantum mechanical and statistical principles, i.e. without any continuum
approaches, empirical parameters or neglecting correlations between structure and segregation.

(c) LEED intensity analysis. So far, our calculations regarding surface structure and
segregation profiles are predictive. Now, we want to establish a complementary, experimental
view of the geometric structure and chemical composition by analysing LEED I (E) spectra
via a multiple-scattering theory. Because of the huge number of publications in this field
only some main aspects are mentioned here: the solution of the time-independent Schrödinger
equation for an electron influenced by the potential of the crystal surface is given by the
Lippmann–Schwinger equation [134, 135]. Here the state |�〉 of a scattered LEED electron
is given by

|�〉 = (1 + G0T )| �k0〉 (36)

with G0 ≡ (E − V0 − p2

2m )−1 being Green’s operator for the free electron. V0 is called the
‘inner potential’ and considers the influence of exchange and correlation effects on the LEED
electron (real part) inside the crystal surface as well as inelastic processes (imaginary part).
The matrix T in equation (36) is defined by V |�〉 = T | �k0〉 with �k0 being the direction of
the incident electrons and allows for a self-consistent solution of the scattering problem. In
principle, the transferred intensity by diffraction of an incident electron beam from direction
�k0 to direction �kg may be directly calculated as

I ( �k0, �kg) = |A0( �k0, �kg)|2 = |〈 �kg|1 + G0T | �k0〉|2. (37)

In practice, however, this is done in three steps as schematically shown in figure 12. First,
the atomic t matrix, which describes the amplitude of the scattering of a spherical wave by an
atom, is calculated. Due to spherical symmetry the atomic scattering matrices ti are diagonal
in angular momentum space. Because of the low electron energy (typically 30–600 eV) they
can be calculated by a small number of atomic phase shifts δ

j
i :

〈l ′m ′|t j |lm〉 = t j
l δl,l′ δm,m′ (38)

with t j
l = 1

2ik0
(exp(2iδ j

i ) − 1) (39)

and k0 = √
2(E − V0). (40)

The atomic scattering matrices are then applied to calculate the diffraction matrix M of an
atomic layer. Finally, the layers are stacked to form a real three-dimensional crystal surface
(figure 12). The ti ’s can also be used for applying perturbation methods to LEED theory. The
basic idea [57, 58] comes from the fact that LEED I (E) spectra only slightly change their shape
for small structural changes. The parameter variations are not even restricted to geometrical
parameters. Changes in the chemical composition of the surface and in vibrational amplitudes
also lead to continuous changes in the shape of the I (E) spectra and therefore can be treated
via perturbation theory, too.

In order to study the surface structure of substitutional disordered alloys, the atomic
scattering matrices of elements A and B can be combined via the so-called average T -matrix
approximation (ATA) [136]:

ti
ATA = citA + (1 − ci )tB. (41)
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Figure 12. The principle of a full dynamical LEED intensity calculation: first, the atomic scattering
matrix is evaluated. Next, a layer scattering matrix is calculated in angular momentum space.
Finally, the layers are stacked to form a three-dimensional surface structure. The thickness of the
slab depends on the penetration depth of the LEED electrons [53].

(This figure is in colour only in the electronic version)

Here, the original scattering matrices are replaced by a composition-weighted average t matrix.
Since different chemical elements possess different scattering behaviours, the LEED analysis
allows for a detailed determination of the composition of each individual surface layer, only
limited by the finite mean free path. Therefore, a very accurate determination of the segregation
profile of a binary alloy is possible. The chemical ‘resolution’ is naturally the higher the more
different are the phase shifts of the pure elements. The disadvantage of the approximation is
the inability of ATA to describe SRO effects. The advantage is the direct access to correlations
between segregation profile and geometric surface structure.

For the comparison between experimental and theoretical best-fit spectra so-called
reliability factors [55, 56] (R factors) are used. The probably best-suited R factor for the
comparison of LEED spectra represents the Pendry R-factor Rp [55]. It attempts to treat all
peaks as well as minima with equal weight (while the human eye would always favour large
peaks over small peaks) and is based on the logarithmic derivative of the I (E) curves:

Rp =
∫
(Yexp − Yth)

2 dE∫
(Y 2

exp + Y 2
th) dE

(42)

with Y = L

1 + V 2
0i L2

and L(E) = 1

I (E)

d I (E)

dE
.

Here, V0i is the damping potential, where 2V0i can be taken as the average peak width of single
peaks at half-maximum. The big advantage of Rp is that it allows for the calculation of a
statistical error [55] given by the variance of Rp:

var(Rp) = Rmin
p

√
8V0i

�E
(43)

with �E being the complete energy range of the I (E) database and Rmin
p the minimum R

factor.
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Figure 13. Schematic phase diagram for Cu-rich Cu–Zn alloys: while it is known that the bcc-
based solid solution β orders in a B2 structure (β ′) for low temperatures, it is a long-standing
question whether a long-range-ordered phase exists in the regime of the fcc-based solid solution α,
too.

In section 5 we will see how the combination of LEED and DFT allows for a detailed
characterization of surface structures.

4. Bulk properties of metal alloys

4.1. Ground state

The ground-state search of binary compounds by total-energy calculations and diagrammatic
approaches suffers largely from the need that the small group of crystallographic configurations
considered must include the stablest one. The combination ‘MSCE plus MC’ allows us to
circumvent this problem as is now demonstrated for the many decades old question about the
existence of a LRO phase in α-brass. Figure 13 schematically shows the phase diagram for Cu-
rich Cu–Zn alloys. Below 35–38% Zn, the historically most-widely used form of brass [137]
exists, so-called α-brass, with a disordered fcc structure. As the disordered bcc alloy (β) is
known to have the B2 structure at low temperatures (β ′), it was long suspected [138] that the
disordered fcc alloy (α) will also order at lower temperatures. However, this ordered phase
(which we might term α′) was never detected—as we will see—possibly due to a low order–
disorder transition temperature T αα′

trans. Moreover, there are definite clues from experiment that
ordering plays an important role in α-brass, i.e. it cannot be described as a random alloy. First,
measurements [23] of the mixing enthalpy of the alloy yield negative values, suggesting the
tendency of Cu and Zn atoms to order crystallographically below some temperature T αα′

trans.
Second, measurements of the diffuse neutron scattering [139] of a sample quenched from high
temperature (T > T αα′

trans) exhibit strong deviations from randomness,manifested by peaks of the
scattering around the 〈1 1

4 0〉 position and symmetrical equivalents in the Brillouin zone. Such
peaks indicate that the disordered alloy develops non-random composition waves, i.e. there is
a tendency for crystallographical order at low temperatures.

In 1931, Hume-Rothery [138] noted that Cu–Zn belongs to a class of compounds whose
structure correlates with the electron-per-atom (e/a) ratio. In systems created from the d10s1

noble metals (Cu, Ag, Au) and elements on their right in the Periodic Table (i.e. d10 sx py
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Figure 14. Schematic pictures of the compounds L12 (Cu3Zn), D022 (Cu3Zn), D023 (Cu6Zn2)
and LPS3 (Cu9Zn3). The latter three ‘long-periodic SL’ (LPS) can be constructed from L12 by
antiphase boundaries along [001] with modulation wavelength M = 1, 2 and 3, respectively.

elements with full d-bands), the d-band of the solute atoms lies far below the Fermi level
and thus its influence on the Fermi electrons on alloying is negligible. During alloying, the
kinetic energy of the free electrons is lowered due to the formation of a gap at the Brillouin
zone boundary by the introduction of an extra period characteristic of the ordered compound
formed. Since this mechanism depends only on the valence electrons, the structure formed is
uniquely defined by e/a. Based on this ansatz, investigations by Sato and Toth [140] predicted
a long-periodic superlattice (LPS) as a possible ground state for Cu3Zn. This is created from
the L12 structure by antiphase boundaries with a periodicity of a certain number of L12 unit
cells along the [001] direction (figure 14). More quantitative attempts to predict the structure
of α- and α′-brass were carried out [69, 141–143] using the CPA [69, 145]. So, Johnson
et al [141] calculated the equilibrium lattice parameter of fcc-disordered Cu1−x Znx (finding a
small deviation from Vegard’s rule) and mixing enthalpies. With the structures of disordered
(α) and ordered (α′) phases of brass being a many decades old, yet unsolved, fundamental
problem in alloy theory, we attempt here a solution by applying the MSCE combined with
MC simulations: starting with a random configuration at a temperature far above the solidus
line, the temperature is stepwise reduced until no more exchange processes between Cu and
Zn atoms take place. The procedure has to be repeated for different cell sizes, temperature
grids and number of MC-steps per temperature to minimize the possibility of being stuck in a
local minimum.

Figure 15 shows the thus found lowest energy structure obtained by MC simulated
annealing of the LDA energy functional of equation (MSCE), out of about 1015 600 possible
configurations. The structure can be identified as D023 (Cu6Zn2), as already suggested earlier
from experimental studies by Reinhard et al [139]. It can be viewed as a SL consisting of L12

and a translated L12 structure (L1′
2) as shown in figure 14: D023 is constructed from L12 by

forming an antiphase boundary after every two lattice constants in the [001] direction, i.e. the
modulation period M of the structure with respect to L12 is M = 2, as visualized in the lower
part of figure 15 [144].

The identification of a certain compound of the LPS group by its formation enthalpy is
a very delicate task, because there are only a few interactions that differ for different LPS
structures. Table 4 gives the total number of neighbours for the first eight neighbour distances
in an fcc lattice and how much of these neighbour bonds are built by unlike atoms for different



Topical Review R1459

Ground state for Cu0.75Zn0.25 :
DO23 [Cu6 (white)Zn2(gray) ]

[001][100]
M = 2           M = 2
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Figure 15. Result of the ground-state search by MC annealing [144]: the ground state found is a
perfectly ordered D023 SL, characterized by a modulation wavelength of M = 2 between antiphase
boundaries along [001].

Table 4. Number of neighbours, corresponding distance (in units of fcc lattice constants) and
number of neighbouring pairs consisting of different chemical species for the L12, D022, D023 and
LPS3 structures.

No. of B atoms around A
Total no. of

Neighbour neighbour atoms Distance (a) L12 D022 D023 LPS3

1st 12 1/
√

2 12 12 12 12
2nd 6 1 0 2 1 1
3rd 24

√
3/2 24 16 20 20

4th 12
√

2 0 8 4 4
5th 24

√
5/2 24 24 24 24

6th 8
√

3 0 8 4 4
7th 48

√
7/2 48 48 48 48

8th 6 2 0 0 2 1

members of the LPS group. If we count the number of B atoms for a given A atom at the
origin, the first difference between D023 and LPS3 occurs for the 8th (!) neighbour distance.
Consequently, differences in the formation enthalpies between LPS structures often amount to
only a few meV/atom. So, calculations of �H f for the LPS group via DFT demand extremely
strict convergence criteria regarding plane-wave basis, k-point set and geometric relaxations.
As we have recently shown [144], a large number of pair and multi-body interactions are
necessary to construct a stable MSCE that properly considers the delicate energy balance
between the various competing phases of Cu3Zn. The consideration of less than 10 pair
interactions would even lead to a wrong ground state, as experienced in earlier CPA studies
where the stable structure obtained for Cu3Zn at T = 0 was L12 [142], which is inconsistent
with the measured [139] SRO (see the next section). Nevertheless, these earlier calculations
of Turchi et al [142, 143] signalled already the propensity of developing some long-periodic
superstructures at low temperatures. Figure 16(a) compares the energies of the long-period SL
EM versus M for Cu3Zn and Cu3Pd, whereby values for Cu3Pd are taken from Lu et al [89]. In
excellent agreement with the LDA calculated formation enthalpies of Cu3Zn (shown as open
squares) our prediction locates a minimum for M = 2, corresponding to the D023 structure. Lu
et al [89] found for Cu3Pd the M = 3 structure as the most stable structure of the LPS group.
We see that with increasing M the formation enthalpies are nearly energetically degenerated.
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Figure 16. (a) Direct (DFT-LDA) and via MSCE calculated formation enthalpies for the LPS
group of Cu3Zn and Cu3Pd. (b) Coherent phase boundary in α-brass calculated with (full curve)
and without (broken curve) taking the constituent strain energy, �ECS, into account [144].

Indeed, different experimental investigations on Cu3Pd alloys [146–148] report the coexistence
of LPS structures in the Cu–Pd alloy system with practically arbitrary modulation wavelength.

The question remains why the predicted D023 ground-state structure up to now was not
observed experimentally as an ordered phase for xZn = 0.25. One possibility would be
that the system disorders already at very low temperatures. To test this, we calculated the
coherent phase boundary, which separates the ordered M = 2 SL from the disordered alloy
(figure 16(b)). As discussed in section 3.2, this phase boundary (full line) can be identified
by MC simulated annealing, recording the specific heat cv as a function of temperature. We
see that, indeed, the transition temperatures are very low on the scale of growth temperatures
(usually of the order of 103 K). Thus, it might be difficult to detect the ordered phase directly.
In section 4.2 we will see how the SRO behaviour of the disordered phase close to this phase
boundary can help to verify the correctness of our prediction.

In order to study the importance of the constituent strain energy, �ECS (equation (22))
for the stability of the found LRO phase, we switched �ECS off in equation (21) and repeated
our MC simulations to determine the coherent phase boundary again. The resulting curve
is shown as a broken line in figure 16(b). We see that �HCE − �ECS leads to about 20 K
higher transition temperatures,while the two curves are practically parallel, i.e. the temperature
difference between them is rather independent from the Zn concentration. The behaviour is
understandable in terms of the ordering energies, δEord , given by

δEord = �Hord − �Hrand. (44)

Here, �Hord and �Hrand are the formation enthalpies, equation (6), of an ordered compound
and a random alloy, respectively, at the same composition. As shown by Zunger et al [70], the
formation enthalpy of a random alloy can be successfully described by so-called ‘special
quasirandom structures’ (SQS). For the following estimation, we will use the formation
enthalpy of SQS14a (Cu6Zn2) as the formation enthalpy of the random alloy for xZn = 0.25.
Using our CE Hamiltonian, equation (21), this leads to an ordering energy

δEord = �HD023 − �HSQS14a = −33.1 meV/atom,
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Figure 17. Ground-state diagram of Ag–Pd resulting from a grid search considering all possible
structures with up to 16 basis atoms. The result is identical to the ground-state diagram received
via MC annealing [161].

while a neglect of constituent strain energies leads to

δEord(no-strain) = (�HD023 − ECS(D023)) − (�HSQS14a − ECS(SQS14a))

= −39.4 meV/atom.

So, neglecting strain leads to a more negative ordering energy and therefore to a more stable
D023 structure. Consequently, the coherent phase boundary will shift to higher temperatures.

If the ground-state search is carried out for the whole concentration regime, we can
construct the full ground-state diagram for the alloy system. A prerequisite for such a
construction is the existence of a coherent phase between the two constituents for any
arbitrary concentration. Such a situation is given in the fcc-based alloy system Ag–Pd:
experimentally [23, 25, 26, 149], Ag–Pd is known to form mutually miscible disordered solid
solutions down to ∼800 K, but no experimental studies exist at lower temperatures to reveal
whether the system will phase-separate or order. The measured [23, 151] mixing enthalpy of
the high-temperature disordered alloy is negative, indicative of ordering. Theoretical studies,
however, found contradictory results: ordering [89, 152–154] as well as phase-separating
tendencies [155, 156] are reported. Additionally, there is a long discussion on the importance of
the d bands [157, 158] on the properties of Ag–Pd alloys,such as resistivity and SRO [159, 160].
Pettifor’s [9] structure map (section 2) predicts no ordered structure for x = 0.50 and 0.75,
but the L12 structure for Ag3Pd, while Zunger’s orbital radii method [10] predicts ordering at
x = 0.50.

Analogous to the Cu–Zn studies, we apply the CE, equation (21), to an extensive T = 0
ground-state search via the MC simulated annealing method for Ag–Pd. A concentration grid
with 5% step width plus xPd = 1/3 and 2/3 were used for the ground-state search. We then
constructed the convex hull (E versus x) to ensure that the predicted ground state at each x is
stable with respect to the disproportionation into two structures with x1 � x � x2 as discussed
in section 3.2. Again, the annealing process is repeated for different simulation conditions
(e.g. different MC cells with up to about 30 × 30 × 30 = 27 000 sites and up to 10 000 MC
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Figure 18. (a) The L11 structure is equivalent to a SL of alternating A- and B-atom layers along
the [111] direction. The geometric layer stacking sequence is, however, ‘abc’, characteristic for
the fcc(111) orientation. (b) Total DOS of the unrelaxed (c/a = 1) and relaxed (c/a = 1.04) L11
structure of the system Ag–Pd.

steps per temperature, different initial configurations and different temperature grids) to ensure
that the result is stable. Beside the final configuration (T → 0) and its formation enthalpy, the
corresponding correlation functions were stored for identification and comparison with those
of thousands of well-defined intermetallic compounds. We found three LRO ground states for
Pd concentrations xPd = 0.25, 0.50, 0.75. For xPd = 0.25, L12 is the most-stable structure
(see figure 14), while for xPd = 0.50, the L11 structure [(Pd)1/(Ag)1(111) SL] is found to be
the ground state (this structure will be discussed in detail and is shown in figure 18(a)). The
compound found for xPd = 0.75 lacks a special name. It represents a (Ag0.5Pd0.5)1/(Pd)1 SL
along [111]. The Pd and Ag atoms in the Ag0.5Pd0.5 (111) layer form an in-plane c(2 × 2)

superstructure. Because of the additional Pd atoms in the Ag(111) layers compared to L11, we
may call this compound L1+

1. Whereas this structure is only 3 meV below the AgPd L11 and
fcc Pd tie-line, its appearance as a ground state is a robust feature of our LDA and CE fits [161].

In order to put our results on even safer ground, we chose an alternative way to determine
the ground-state line. Instead of applying MC simulated annealing in order to take a large
number of structures into account, we restrict the search to compounds with a very limited
number of basis atoms and calculate the formation enthalpy of all possible configurations
via the MSCE Hamiltonian (for technical details, see section 3.2). For Ag–Pd we checked
for all configurations with up to 16 basis atoms. This restriction still allows for more than
about 130 000 structures, a number which could never be treated by direct DFT calculations
for all compounds. The MSCE Hamiltonian permits us to calculate the formation enthalpies
of all these geometrically fully relaxed structures within a few hours on a high-performance
workstation. The resulting ground-state diagram is shown in figure 17. We see that the
constructed ground-state line is formed by exactly those three structures which were already
detected as ground states via MC annealing.

The most surprising result of our ground-state search is the prediction of the L11 structure
for low temperatures, since up to now the only binary metal alloy system known possessing L11

as a ground state is the Cu–Pt alloy system [24]. This structure is sketched in figure 18(a). While
the geometric layer stacking is ‘abc’, characteristic for fcc(111), the chemical stacking is ‘AB’.
The question arises, how can this unsuspected result be explained ex post facto. Clark et al [150]
described the existence of the L11 structure in Cu–Pt by a coupling between electronic states
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at L and X Van Hove singularities at the Fermi level, εF. Furthermore, they suggest that L11 is
stabilized over L10 by the fact that at the Fermi level the d-electron density of states (DOS) is
lower for the L11 than for the L10 structure. Indeed, we find that the DOS of L11-AgPd at εF

is about 20% lower than that of the L10 structure, in accordance with the 22 meV/atom lower
formation enthalpy of L11 over L10. However, this result holds only for the atomically relaxed
structures. For atomically unrelaxed structures, the formation enthalpy of L11 is still lower
than that of L10 (by 15 meV/atom), but the DOS at εF are practically equal. So, in the case of
Ag–Pd, for the unrelaxed systems the DOS argument is not sufficient for the stability of L11, but
only a stability supporting factor. Help comes by analysing individual energy parts: we may
separate the structure-dependent energy part of the total energy into the electrostatic energy
(often referred to as ‘Madelung energy’ or ‘Ewald energy’) and the band-structure energy. The
former is given by the Coulomb energy of the nuclei system plus the homogeneous electron gas.
It turns out that for Ag0.5Pd0.5 even for the unrelaxed c/a ratio the Madelung energy amounts
to about 400 meV/atom (!) lower for L11 than for L10. Although all remaining energy parts
(e.g. the Hartree term) are clearly higher in energy for L11 than for L10, they cannot compensate
for this large difference in the Madelung energy. A relaxation of c/a now additionally causes
a reduction of the total DOS below the Fermi level and therefore to a further energy decrease.
This behaviour is demonstrated in figure 18(b), giving the DOS for L11 with and without a
relaxed c/a ratio (note that both DOS were smoothed). Interestingly, we also found for the L1+

1
(xPd = 0.75) ground-state structure that the d band is pushed below the Fermi level,different to,
for example, the L12 (Ag Pd3) structure, for which the opposite is true. This probably stabilizes
L1+

1 over L12 for xPd = 0.75. The discussion also makes clear that, although the relaxation
in L11 only leads to an 8 meV/atom more negative formation enthalpy, this small energy
difference can already profoundly influence the predicted ground-state diagram, figure 17,
where many formation enthalpies of structures differ by less than 5 meV/atom. Therefore,
relaxations are essential for a correct description of phase stability [161].

The critical temperatures corresponding to the maximum of the coherent phase boundaries
separating disordered alloys and low-temperature ordered compounds were also calculated
from MC simulations to be Tc = 340, 320 and 270 K for x = 0.25, 0.50, 0.75, respectively,
and therefore far below the solidus line (T = 1235 K for x → 0 and T = 1828 K for
x → 1) [26]. These low transition temperatures explain why, up to now, the three structures
were not observed experimentally. Unfortunately, there are also no SRO measurements for
the random alloy at higher temperatures. The determined coherent phase boundaries allow
for the construction of a new phase diagram for the system Ag–Pd as schematically shown
in figure 19. It now includes three low-temperature LRO phases with critical temperatures at
xPd = 0.25, 0.50 and 0.75.

The predicted LRO Ag–Pd structures represent not only an important addition to the
phase diagram of the system, but may also significantly influence mechanical and electronic
properties in the low-temperature regime. Unfortunately, an experimental proof of the
existence of these compounds is still lacking, probably due to the low transition temperatures
between low-temperature compounds and disordered alloys. There is, however, one possibility
left for checking the quality of the expanded interactions: the prediction of SRO and mixing
enthalpies which will be discussed next.

4.2. Short-range order and mixing enthalpy

In the last section, we have seen that one of the major problems in predicting low-temperature
ground states is the missing direct experimental evidence, because often the order–disorder
transition takes place at temperatures far too low for any real crystal to grow. Since we claim
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Figure 19. Schematic phase diagram for Ag–Pd including the three predicted LRO phases at low
temperature. The calculated phase boundaries are also shown.

that our constructed effective pair and multi-body interactions are universal in the sense that
they can be applied for all temperature regimes, we should be able to describe SRO and mixing
enthalpies with an accuracy large enough to make a quantitative comparison with experiment
possible. Then, a successful prediction of experimentally observed SRO by applying the same
interactions which were used for the ground-state analysis would strongly support the validity
of our ground-state diagram at T → 0 K. Here, we will only focus on two characteristic
examples, namely an ordering system (Cu–Zn) and a phase-separating system (Al–Zn).

Coming back to the old question whether there is a LRO phase in α-brass, we face that
diffuse intensity measurements via neutron diffuse scattering clearly show diffuse intensities
around well defined positions in the Brillouin zone for SRO [139]. The measured SRO
pattern is shown on the right side of figure 20. The experiments apply to a sample with a
Zn concentration of 31.1% at T = 200 ◦C. For xZn = 0.311, the difference between transition
temperature (∼10 ◦C) and experimentally used temperature (∼200 ◦C) is small compared to
smaller Zn concentrations so that the observed SRO should be characteristic for D023. The
experimental pattern indeed clearly shows SRO intensities around k = 〈1 1

4 0〉. Since the
LPS group introduced in section 4.1 possesses the fundamental reciprocal space wavevector
k = 〈1 1

2M 0〉 with M being the modulation wavelength, we see the highest intensity for the LPS
structure with M = 2. As is known from figure 14, this is exactly the modulation wavelength
of the D023 structure which was predicted as the low-temperature state in α-brass. The pattern
is in very good agreement with that resulting from our calculation (figure 14).

For a quantitative comparison of the computed SRO with experiment, we calculated the
Warren–Cowley SRO parameter αlmn (equation (27)) for the first 16 shells of an Cu0.689Zn0.311

alloy at T = 473 K and compared the values to those obtained from neutron scattering
experiments [139] as shown in table 5. Considering the fact that the experimental error of α000

amounts to be as large as 8% (since α000 = 1.000 by definition) and that the authors give about
the same error also for all further parameters, the predicted and experimentally determined
values agree very well. We see that α110 is negative, indicating that Zn atoms prefer Cu atoms
as nearest neighbours. Furthermore, all α2n00 are positive, while all α(2n−1)10 are negative.
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Figure 20. SRO pattern and corresponding contour plot for Cu–Zn solid solutions with different
concentrations. For xZn = 0.31 the SRO intensity pattern resulting from neutron diffraction
experiments [139] is shown for comparison with our calculation. In both cases, SRO peaks around
〈1 1

4 0〉 are visible, favouring D023 as the low-temperature ground state.

Table 5. Warren–Cowley SRO parameter αlmn resulting from our calculations and from
experimental studies [139] for Cu0.689Zn0.311 at T = 473 K.

(lmn) α
exp
lmn αtheo

lmn (lmn) α
exp
lmn αtheo

lmn

000 1.0831 1.0000 400 0.0296 0.0279
110 −0.1373 −0.1689 330 −0.0134 −0.0211
200 0.1490 0.1863 411 0.0141 0.0306
211 0.0196 0.0196 420 0.0050 0.0825
220 0.0358 0.0883 332 −0.0005 −0.0050
310 −0.0404 −0.0453 422 −0.0050 −0.0050
222 −0.0077 0.0371 431 0.0068 0.0148
321 −0.0036 −0.0132 510 −0.0107 −0.0186

The concentration dependence of the SRO intensities for T = 200 ◦C is also shown in fig-
ure 20. For a concentration xZn = 0.31, the temperature chosen comes closest to the transition
temperature Ttrans (T ≈ 1.55Ttrans) compared with the other two concentrations, so character-
istic SRO peaks around 〈1 1

4 0〉 become visible. For xZn = 0.20, the SRO peaks are no longer
exactly on 〈1 1

4 0〉 positions, but are displaced to 〈1 1
6 0〉. This could be a consequence of ‘miss-

ing’ Zn atoms (the concentration is now smaller than 25%) so that, on average, the modulation
wavelength M has to be increased and therefore the SRO peaks are shifted towards 〈100〉.

In experiment, the SRO parameters, table 5, were used to construct a real-space image of
the alloy by using them as input for an inverse MC approach in order to obtain characteristic
interactions [139]. In the case of α-brass, real-space images are of special interest for the
following reason: as already mentioned, and apparent from table 5, all SRO parameters
described by (lmn) = (2n; 0; 0) are positive, while all SRO parameters described by
(2n−1; 1; 0) are negative. This property should lead to characteristic chains of Zn atoms along
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Figure 21. Visualization of a (001) plane of α-brass (cut through the crystal) for T = 473 K. While
the left pictures result from a model crystal based on diffuse neutron scattering experiments [139],
the right picture is the result of MC simulations using �HCE . In both cases, chains of Zn atoms
along [100] can be seen, indicating that SRO is present and therefore the observed solid solution
cannot be described by a random alloy.
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Figure 22. Calculated mixing enthalpies of α-brass for different temperatures [144] and comparison
with experimental data [23] (bold curve).

the [100] direction. Figure 21 compares the real-space structure deduced from experiment [139]
and from our ‘CE plus MC’ calculation. In both cases, chains of Zn atoms are visible along
[100], indicating that SRO is essential for a quantitative correct description of the physical
properties of the disordered solid solution of α-brass. Moreover, the type of SRO is consistent
with the predicted D023 ground state in section 4.1.

Since SRO plays an important role in α-brass, it should also influence its energetics,
i.e. the mixing enthalpy of the system should possess a temperature dependence. To clarify
this, figure 22 compares calculated mixing enthalpies, �Hmix(x, T ), for different temperatures
with experimental data taken from Hultgren’s book [23]. We start with the random alloy
(T → ∞) and go down to temperatures where SRO sets in. Comparing the energy curves for
the random and disordered alloy, we see that the calculation neglecting SRO leads to much
higher mixing enthalpies. For higher Zn concentrations a good agreement between experiment
and calculated mixing enthalpies can only be reached if SRO is taken into account.
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Figure 23. (a) SRO maps of Al0.9Zn0.1 (left) and Al0.5Zn0.5 (right). Peaks are at � and streaks in
the SRO intensity along (111) are visible. Clustering tendencies are clearly stronger for 10% than
for 50% Zn, resulting in a higher intensity value around the � point for Al0.9Zn0.1. A temperature
of T = 700 K was chosen. (b) Calculated mixing enthalpy �H of Alx Zn1−x at T = 643 K as a
function of composition. The broken curve shows the result of a study using CALPHAD [162],
while the full curve is our calculated first-principles mixing enthalpy �HAlZn(x, 643K ).

In summary, the alloy is stabilized at low temperatures by deviating systematically from
randomness: it eliminates unlike-atom first-neighbour pairs and enhances unlike-atom second-
neighbour pairs.

An important point for the characterization of alloy systems is that the phenomenon ‘SRO’
is by no means restricted to ordering systems. Analogous to ordering tendencies in a solid
solution like α-brass as discussed above, a solid solution may also form small atomic clusters
of identical atoms. As an example, we consider the metal alloy system Al–Zn. The SRO of
Alx Zn1−x solid solutions was calculated for two different Zn concentrations, namely 10 and
50% Zn at T = 700 K (figure 23(a)). It should be noted that the patterns take the fact into
account that the distance between 〈000〉 and 〈011〉 is larger by a factor of

√
2 than the distance

between 〈000〉 and 〈100〉. The SRO in Al0.5Zn0.5 shows diffuse intensity at � = 〈000〉, with
streaks along 〈111〉. The SRO at � is indicative of a clustering tendency in the solid solution,
consistent with the miscibility gap in the Al–Zn phase diagram and the experimentally observed
positive formation enthalpies [23]. The streaking of the SRO along 〈111〉 is a ‘fingerprint’ (see
Al–Zn CE, table 2 of the energetic preference for SL along [111] from the CE, table 2). We
also see that, especially for a concentration of 50% Zn, the formation enthalpies of [111] SL are
unusually small, sometimes only 1–5 meV/atom less stable than phase separation. The SRO
behaviour of Al–Zn alloys in the solid solution is also interesting since it can manifest itself at
low temperatures in precipitation experiments. Ageing of Al–Zn alloys show [111] faceting of
Zn precipitates as well as a crossover at a critical particle size from spherical to oblate ellipsoid,
with the short axis in the [111] direction. We will discuss this subject in the next section. Upon
going to Al-rich compositions, the SRO of Al0.9Zn0.1 also peaks at �, but the streaking along
the 〈111〉 direction is diminished. This reduction of the 〈111〉 streaks for Al-rich compositions
is a consequence of the fact that formation enthalpies of SL along the [111] direction become
larger (corresponding to less stable structures) with increasing Al concentration.

The concentration dependence of the mixing enthalpy in Al–Zn was calculated for
a temperature T = 643 K, because studies performed by Mey [162] for exactly these
temperatures opens the possibility for a direct comparison. This earlier investigation is not
based on first-principles calculations, but used a polynomial description which was adjusted to
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fit all available experimental information using a least squares program (CALPHAD I [163]).
In that sense these calculations give an ‘average’ mixing enthalpy, i.e. averaged with respect
to many experimental values for �HAlZn(x, 643 K). The calculation was made for the fcc
solid solution relative to its fcc constituents, i.e. the fcc–hcp energy difference for Zn was
already subtracted (note that Zn normally possesses an hcp lattice, while in the Al–Zn solid
solution it is forced to have a fcc structure). Our calculated first-principles mixing enthalpy
�HAlZn(x, 643 K) and the fit to experiment of Mey [162] are compared in figure 23(b). The two
curves agree very well: they show a maximum around 40% Zn with a corresponding mixing
enthalpy of about 20 meV/atom. A comparison to individual experimental studies of the fcc
phase appears to be very difficult, because their results differ profoundly: for example, while
calorimetric studies of Wittig and Schöffl [164] (T = 643 K) and Connel and Downie [165]
(T = 637 K) lead to a maximum in the mixing enthalpy at about 25% Zn, electromagnetic
field studies by Hilliard et al [166] (T = 653 K) find a maximum around 60% Zn. To my
knowledge, these discrepancies for the thermodynamic properties of the fcc solid solution are
not yet clarified; hence, future experimental studies would be desirable.

4.3. Coherent precipitates

As already mentioned in section 3.3, solid state decomposition reactions like the phase
separation of an alloy into its constituents, A1−x Bx � (1 − x)A + xB, create so-called
precipitates which define an important part of the microstructure of many alloy systems.
The early stage of these reactions typically involves the formation of coherent precipitates
that adopt the crystallographic lattice of the alloy from which they emerge [120]. Coherent
precipitates have practical relevance, as they impede dislocation motion and thus lead to
‘precipitation hardening’ in many alloys [120, 167–169]. Despite their importance, precipitate
microstructures were thus far not amenable to first-principles theories, since their description
requires ‘unit cells’ containing 103–106 atoms or more, well beyond the current capabilities of
first-principles methods. The chemical and structural properties of precipitates are determined
by the identity of the phases being located to the left and right of the two-phase region in
the phase diagram. In the case of the phase-separating system Al–Zn, one of the prototype
systems for studying coherent precipitates, the two-phase region corresponds to elemental Al
and Zn, so that coherent precipitates formed from the Al-rich fcc-based solid solution consist
of only Zn atoms. In experiments, the fcc-Zn precipitates are formed by quenching an Al-rich
Al–Zn solid solution deep into the two-phase region of the phase diagram (typically ice-water
is used), followed by sample ageing (typically at room temperature). The formed precipitates
can then be observed via transmission electron microscopy (TEM) [170] as shown in figure 24.
The black spots are coherent fcc-Zn precipitates.

Due to the ability of Al–Zn to harden via precipitate heat treatment the shapes and
sizes of coherent precipitates are of particular interest. Therefore, a number of experimental
studies have been performed [170–176] to learn more about the size–shape relation of these
microstructures. It turns out that for Al–Zn alloys these experiments agree very well with each
other and lead to the following scenario: small precipitates tend to be spherical, until they
reach a critical radius RC of about 15–25 Å (dependent on the ageing temperature) at which
point they become ellipsoidal/plate-like with the short axis parallel to the [111] direction.
The transition radius RC depends on the temperature: it shrinks as the ageing temperature is
reduced. The observed flattening, which is always along [111], allows us to describe the shape
of precipitates in a simple way: the shape obtained for a given average size R̄ = (ca2)1/3 and
temperature T is measured by the ratio c/a between the short (c) and the long (a) axes of the
precipitate, as schematically shown in figure 24, too. Such c/a ratios as a function of T and size
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Figure 24. Quenching an Al-rich Al–Zn solid solution into the two-phase region of the phase
diagram (left), followed by sample ageing, leads to the formation of Zn precipitates which can then
be observed via TEM [170] in the form of black spots (right). The shape of the precipitates are
then determined by the c/a ratio as schematically sketched in the TEM image.

were determined in an number of experiments [170–176]. While different ageing times lead to
different distribution of sizes, remarkably the size–shape relation is universal, irrespective of
whether the ageing period is minutes or weeks. In an atomistic sense, this observation raises
the possibility that each individual precipitate represents locally an equilibrium configuration.
Such local equilibria are a consequence of the fact that atoms in a single precipitate exchange
more readily with each other than with other precipitates. Our strategy will henceforth be
to try a thermodynamic (rather than a kinetic) ansatz to describe the size–shape relation and
examine the extent to which the predicted relation does or does not agree with the measured
relation of sizes and shapes.

To calculate equilibrium shapes of coherent precipitates we use the MSCE Hamiltonian,
equation (21), in canonical ensemble MC simulations. In order to exclude boundary effects,
unit cells containing up to 60 × 60 × 60 = 216 000 atoms were needed. We used fix boundary
conditions so that boundary sites are always occupied by Al atoms. These atoms are ‘frozen’,
i.e. cannot flip their identity. This restriction has the advantage that precipitates cannot grow
over the cell boundaries. The MC annealing process is initialized at a sufficiently high
temperature, where the solid solution is thermodynamically stable. Using a given number
NZn of Zn atoms in the MC cell (hence, a given average precipitate size R̄), the system
is carefully annealed below the coherent fcc miscibility gap. Upon crossing this solvus, a
coherent precipitate is formed. The MC cell size and number of spin flips are increased
until the precipitate shape remains unchanged. At this point we record the final equilibrium
configuration as a function of temperature.

Figure 25 shows calculated equilibrium shapes of coherent Zn precipitates for different
temperatures and sizes. For clarity, only the Zn atoms are displayed. We see that
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Figure 25. Dependence of the calculated coherent fcc Zn precipitate shape on the number of Zn
atoms and temperature in Al–Zn alloys. The bottom right marks the c and a axes of the precipitate
which can be used for a quantitative comparison with experimental data (only Zn atoms are shown).

(i) with increasing size and decreasing temperature precipitates become more ellip-
soidal/hexagonal,

(ii) precipitates flatten with increasing size,
(iii) for very low temperatures precipitates show some faceting.

These observations are in qualitative accordance with experimental studies. Moreover, we
also find that the short axis of the precipitates is always parallel to the [111] direction, in
agreement with experiment. To critically assess these results quantitatively, figure 26 compares
the measured [171, 172, 174–176] and calculated precipitate shapes (c/a) for two different
temperatures. The experimental values correspond to Al1−x Znx alloys with x = 0.068 and
0.138 for T = 300 and 200 K, respectively. Our quantum-mechanical predictions were
done for exactly these two concentrations and temperatures. The agreement is excellent:
our thermodynamic theory accounts quantitatively for the change of the c/a ratio with size
and temperature [177]. For samples aged at room temperature, c/a is nearly 1 up to about
rm = 2 nm (2175 Zn atoms). Then, the c/a ratio starts to decrease, e.g. for rm = 3.5 nm
(11 660 Zn atoms), c/a = 0.5. For a given size rm = (ca2)1/3, the ratio c/a can only be
changed by lowering the ageing temperature: the lower the ageing temperature the smaller is
the resulting c/a ratio. We conclude that, although the precipitates are created by an inherently
kinetic heat treatment process, the entire series of their size–shape relation can be explained
in terms of thermodynamic arguments. Furthermore, first-principles theory can predict the
size–shape relation within experimental accuracy.

To shed more light into the shape-controlling factors, the MSCE Hamiltonian,
equation (21), is separated into physically motivated parts as the chemical energy (Echem)
containing all the information about different pair and multi-body interactions, and the
constituent strain energy, ECS. Naturally, this separation is not unique, but will allow us
to discuss and understand which energetic factors control the precipitate equilibrium shape.
We annealed an A24 825Zn2175 supercell, but this time, instead of applying the full Hamiltonian
in the MC simulation, we used only the constituent strain energy ECS and the chemical energy



Topical Review R1471

Mean precipitate radius rm  [nm]

A
xi

al
 c

/a
 r

at
io

0.2

0.4

0.6

0.8

1.0
exp. (T = 200K)
exp. (T = 300K)
exp. (T = 300K)
exp. (T = 200K)
exp. (T = 300K)
theory (T = 300K)
theory (T = 200K)

T = 200K

T = 300K

(x = 0.138)

(x = 0.068)

Figure 26. Shape (c/a) versus size relation of Zn precipitates for two different temperatures. The
mean precipitate radius rm is given by rm = (ca2)1/3. The lines denote the results from our calcula-
tions [177] and the open points are taken from different experimental studies [171, 172, 174–176].

Echem separately. If we only use the strain part ECS in the simulation, we receive a flat layer,
i.e. the strain part gives platelet stabilization with c/a → 0. Thereby, the direction of the
platelet is defined by the elastically softest direction of the material which forms the precipitate.
Surprisingly, the resulting layer is oriented towards [111] and not [100], which is usually the
softest direction for the fcc lattice. The reason is the following: Zn naturally is an hcp element,
but in Al-rich Al1−x Znx alloys it is forced to adopt the fcc structure of the alloy. It thus develops
an instability [94] in the form of an anomalously low energy for the [111]-deformed unit
cell. This instability is demonstrated in figure 27 which compares the LDA-calculated total
energies of uniaxially distorted fcc-Zn along the [100] and [111] directions. The calculations
are volume-conserving, i.e. whilst the ‘basal’ plane lattice parameter ap is varied, the distance
d between layers is chosen so as to maintain the constant volume of the undistorted unit cell.
The x axis gives the resulting d/ap ratio with respect to ideal close-packing. While distortions
along the [100] direction have an energy minimum at d/ap = 1 (the ideal fcc cell), distorting
fcc-Zn in the [111] direction leads to a new minimum around d/ap = 1.15 lying 5.5 meV
below the energy level of the ideal undistorted fcc-Zn unit cell. As a consequence, [111]
is the elastically softest direction of fcc-Zn, resulting in extremely small (<1 meV/atom)
coherence strain energies along this direction. These [111]-soft precipitates are embedded in
a matrix of Al which has an elastically soft [100] direction. While the [100] softness of Al has
been shown to yield spinodal decomposition fluctuations along this direction [178], it does not
control the plate orientation of (relatively) large Zn precipitates due to the well-known result of
Khachaturyan [168] that the habit plane of a precipitate is determined by the elastic constants
of the precipitate phase, and not by those of the matrix.

Considering only the‘chemical part’ Echem in the simulations leads to a compact, but
faceted polyhedron. This faceting caused by the chemical part of the Hamiltonian is a
consequence of a strong anisotropy of the chemical energy for Al–Zn. This chemical anisotropy
is evident from the fact [94] that (111)-oriented Al n /Znn SL have much lower chemical energies
than SL of other orientations. This is reflected by the unusually strong directional dependence
of the interfacial energies of Aln/Znn SL, as already shown in figure 8: for SL along [201] the
interfacial energies are an order of magnitude larger than for SL along [111]. Interestingly,
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Figure 27. Volume-conserving first-principles total energy calculations of fcc-Zn deformed along
different crystallographic directions. The energy differences caused by distortions along [100] and
[111] as well as for hcp-Zn are always given with respect to the undistorted fcc lattice. The energy
of hcp-Zn is denoted as an open hexagon.

the found ratio d/ap = 1.15 at the energy minimum is identical to the well-known anomalous
d/ap ratio of hcp-Zn [94].

The conventional understanding [168] of spherical versus plate-like precipitate shapes is
based on the balance between strain and interfacial (chemical) energies: as precipitates get
larger, strain energies dominate over chemical energies and lead to plate-like shapes along the
elastically soft direction. For small precipitates, chemical energies can dominate and hence
lead to spherical shapes which minimize interfacial area. Here, we find that a third component
becomes important: the anisotropy of the chemical energy which controls quantitatively to
which extent the precipitates facet at low temperatures. Figure 28 shows equilibrium shapes
resulting from calculations considering the chemical part only: at low temperatures, when
entropy is unimportant, the strong anisotropy of the chemical energy creates facets along planes
of low interfacial energy. These are mostly (100) and (111) planes whose interfacial energies are
the lowest and practically degenerated (see figure 8). In contrast, at high temperatures, where
many configurations coexist due to entropy, the chemical anisotropy is largely averaged out
and therefore the precipitates become spherical, exactly as found in earlier theoretical studies
that assumed simplified isotropic chemical terms [119]. However, the chemical part alone,
while stabilizing facets, still leads to c/a = 1 (as shown by Herring [179], the equilibrium
shape obtained from pure chemical interaction is determined by the Wulff construction which
does not allow flattening). Indeed, no flattening can be observed in figure 28, because only
the constituent strain ECS can produce c/a < 1. Thus, the equilibrium c/a value at T → 0 is
dictated by the competition between Echem (driving c/a → 1) and ECS (driving c/a → 0).

One might think that the use of continuum elasticity plus empirical interfacial energies
might have sufficed to study precipitate shapes in Al–Zn. However, the present studies show
effects that are unsuspected, such as the large anisotropy of the interfacial energies and the
critical role of the elastic constants of an unstable phase: fcc-Zn. Our approach provides both
quantitative predictions as well as a microscopic picture for the variations in shape and size
with temperature.
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Figure 28. Equilibrium precipitate shapes for different temperatures and sizes resulting from
calculations where the constituent strain energy was neglected. The size is given by the number
of Zn atoms, NZn. For low temperatures, the faceting caused by the anisotropy of the chemical
energy in Al–Zn becomes visible.

4.4. Non-equilibrium phenomena: ageing of microstructures

In the previous section we have seen that, although the precipitates are created by an
inherently kinetic heat treatment process, the size–shape relation of fully developed precipitates
(t → ∞) can be explained in terms of thermodynamic arguments [46, 177]. However, the
distribution of precipitate shapes and sizes at finite ageing time is controlled by kinetics
as studied next. Indeed, the kinetic evolution of an alloy morphology is important for an
understanding of how the final shape of the alloy develops. For our calculations we used the
two kinetic MC algorithms discussed in section 3.3, whereby periodic boundary conditions are
used. Additional to the thermodynamic properties, experimental investigations of the kinetic
evolution of precipitates in Al–Zn alloys report the following behaviour [170, 180]:

(i) The distribution of precipitate shapes changes with ageing time: the longer the ageing
time the less spherical and the more ellipsoidal the precipitates become.

(ii) The width of the distribution of precipitate shapes and sizes depends on the heat treatment.
Lowering the ageing temperature leads to a broadening of the size distribution compared
with higher ageing temperatures.

(iii) After the initial formation of precipitates within the first few seconds for a given
temperature and concentration, the SRO parameters of the alloy only show a weak, but
non-negligible, time dependence. We try to describe and understand these properties
theoretically.

As a model system, we chose an Al0.932Zn0.068 alloy and a MC cell which consists of
56 × 56 × 56 sites (a total of 175 616 atoms) containing a total of 11 942 Zn atoms. For
the concentration of 6.8% Zn, the transition temperature (the temperature where precipitation
occurs) was determined to be Ttrans ≈ 330 K. Figure 29 shows the time evolution of the
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Figure 29. Zn precipitates in Al–Zn as a function of ageing time for T = 250 K: with increasing
t the average size of the precipitates increases while their number decreases (only Zn atoms are
shown).

Figure 30. Zn precipitates in Al–Zn for two different ageing temperatures and times: for a constant
ageing time, a higher ageing temperature leads to larger, but less, precipitates (only Zn atoms are
shown).

precipitate configurations at T = 250 K. Frame (a) demonstrates that, even after an ageing
time of only 5 s, many small coherent Zn precipitates are visible, while less than 10% of the Zn
atoms remains in solution. Furthermore, we see that, with increasing ageing time, the number
of precipitates decreases, while their average size increases. So, the number of precipitates
decreases from Np = 58 at t = 5 s down to Np = 10 at t = 5 min.
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Figure 31. (a) Logarithmic plot of the number of precipitates versus ageing time in an Al0.932Zn0.068
alloy (11 942 Zn atoms) for three different temperatures. The slope of all three curves is very close
to −1, i.e. the expected value for classical Ostwald ripening (broken line). (b) Logarithmic plot of
mean precipitates diameter dm as a function of ageing time. The resulting curve shows a slope of
0.31, very close to 1/3 (broken curve) expected for Ostwald ripening.

In order to see the influence of the ageing temperature on the precipitate size distribution,
figure 30 shows configurations for two different temperatures and ageing times: for a fixed
ageing time the number of precipitates is larger for the lower ageing temperature, while the
average size of precipitates is larger for the higher ageing temperature. In order to quantify these
observations, figure 31(a) gives a logarithmic presentation of the number of precipitates, N
versus the ageing time, t , for three different temperatures. In all cases, the log N versus log t plot
shows a slope close to −1 (given by the broken line). This slope is exactly the value expected for
classical Ostwald ripening: smaller precipitates disappear with increasing ageing time, while
larger precipitates appear, leading to an increase of the mean diameter dm via dm ∝ t1/3. The
fluctuations within each individual curve are caused by the limited system size. So, for example,
for an ageing temperature of 250 K and an ageing time of 5 min, there are only 10 precipitates
left, leading to quite poor statistics. Figure 31(b) displays the ‘mean diameter’, dm , of all
precipitates as a function of ageing time for T = 250 K. Here, dm represents the diameter of a
sphere with the same volume as the observed precipitate. As defined in section 4.3, this diameter
is given by dm = 2rm = 2(ca2)1/3 with c and a the thickness and length of the ellipsoidal
precipitates. Again, a logarithmic presentation is used, allowing for a direct determination of
the observed slope: we find a slope of 0.31 very close to the 1/3 slope of classical Ostwald
ripening (given by the broken line in figure 31(b)). In summary, our studies suggest that the
growth process of precipitates in Al–Zn represents an example of Ostwald ripening.

A more quantitative description of the decomposition permits the determination of the
Warren–Cowley SRO parameters. Figure 32 shows the values of the first five SRO parameters
αlmn as a function of ageing time for T = 250 K. The curves correspond to the real-space
images of figure 29. The SRO parameters are all positive, reflecting that precipitation is a
phase-separating process. They show a significant increase during the first few seconds, in
agreement with our observation that already after an ageing time of t = 5 s more than 90%
of all Zn atoms belong to Zn precipitates (figure 29). After the creation of precipitates is
terminated within these first few seconds, the rate of increase of αlmn is reduced. Unlike the
early growth stage, the time dependence of αlmn is no longer controlled by the formation of
new precipitates but by the disappearance of smaller precipitates in favour of larger precipitates
(Ostwald ripening).
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Figure 32. Time dependence of the first five Warren–Cowley SRO parameters (T = 250 K).

Table 6. Experimental SRO parameter of a Al0.962Zn0.038 alloy given by Haeffner and Cohen [180]
at T = 353 K for t = 3 and 168 h and a comparison to kinetic MC values (this work). The right
column gives the calculated parameters for the corresponding equilibrium configuration.

(lmn) α
exp
lmn (t = 3 h) αtheo

lmn (t = 3 h) α
exp
lmn (t = 168 h) αtheo

lmn (t = 168 h) αtheo
lmn (equil.)

000 0.967 1.000 1.113 1.000 1.000
110 0.176 0.309 0.244 0.357 0.569
200 0.110 0.282 0.154 0.296 0.512
211 0.094 0.184 0.141 0.231 0.473
220 0.086 0.154 0.125 0.198 0.449
310 0.077 0.114 0.105 0.168 0.422
222 0.072 0.100 0.099 0.133 0.389
321 0.070 0.074 0.090 0.122 0.377
400 0.053 0.077 0.070 0.103 0.368
330 0.048 0.051 0.076 0.090 0.347
411 0.058 0.057 0.072 0.091 0.351
420 0.054 0.047 0.070 0.080 0.336

In 1989, Haeffner and Cohen studied the SRO order behaviour of Al0.962Zn0.038 as a
function of ageing time via x-ray diffuse scattering [180]. The resulting experimental SRO
parameters (T = 353 K) for two different ageing times are given in the second and fourth
column of table 6: although the ageing time for the two measurements differ by almost two
orders of magnitude, the resulting SRO parameters differ by only 20–50%, being in qualitative
agreement with our observation. For a quantitative comparison, we applied our kinetic MC
algorithms to an alloy with the same concentration (3.8% Zn) as used in the experiment and
simulated the very same ageing times. The simulation of the ageing time of t = 168 h took
about 5 weeks CPU on a Silicon Graphics Origin 2000. The comparison is given in table 6
together with the SRO parameter of the corresponding equilibrium configuration. Especially
for the shorter ageing time (t = 3 h) the theoretical values of the first four shells are clearly
larger than in experiment, while the agreement is excellent for higher shells [(222), (321),
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(400), etc]. In principle, this observation also holds for the second time (t = 168 h), although
the agreement with experiment in the lower shells is improved. Possibly the increase in αlmn

is too strong at the early phase of the simulation. Other reasons could be that:

(i) the restriction of our model to nearest-neighbour jumps only is insufficient for the
description of the real alloy system

(ii) the experimental data possess large errors.

Nevertheless, even for the long ageing time the configuration cannot be described by the
equilibrium configuration. This becomes obvious by comparing the SRO parameter of the
equilibrium configuration given in the last column of table 6 with the experimental SRO
parameter. The theoretical parameters at equilibrium are nearly a factor of two higher than
those for an ageing time of 168 h, emphasizing the fact that a description by thermodynamic
arguments would not work.

5. Alloy surfaces: segregation, relaxation, ordering

5.1. Crystallographic structure and segregation profile

In the last section, we have seen that the ordering of bulk alloys cannot be simply divided into
two classes of systems, namely phase-separating and ordering systems. At finite temperatures,
the energetics of disordered alloys is clearly controlled by SRO which, in general, strongly
depends on temperature and alloy composition. Now, it will be shown that the same difficulty
with respect to classifying ordering tendencies holds also for alloy surfaces. The phenomenon
on which we concentrate in the following is called surface segregation, denoting any deviation
from an alloy’s bulk-like composition and order in the vicinity of the surface. As already
mentioned in section 2, the segregation of one component to the surface in ordering alloy
systems should be forbidden from the fact that this requires the occupation of adjacent sites by
identical atoms. There is, however, a second energy component which must be considered: the
energetically preferred termination of the alloy surface. Obviously, the equilibrium structure
will be controlled by the competition between these two characteristic energy terms. As an
example, we will investigate the B2 phase of the systems Co–Al, Fe–Al and Ni–Al. Although
the three TMs involved crystallize in different lattices (hcp-Co, bcc-Fe, fcc-Ni), their TM-Al
phase diagrams exhibit B2 phases around TM0.5Al0.5. Since B2 (often referred to as ‘CsCl’
structure) is the prototype of so-called bcc-based alloys according to ‘Strukturbericht’, its
existence is certainly most surprising in Ni–Al where none of the two constituents possesses
the bcc structure. The critical temperature of the B2 phase amounts to about 1930 K for
CoAl and NiAl, but only to about 1500 K for Fe–Al [149]. The lower stability of the latter
is consistent with the bulk formation enthalpy, �H f , which has a lower modulus for FeAl
compared to CoAl and NiAl as already discussed in section 3.1 and displayed in table 1.

The ideal B2 structure of the three systems is schematically displayed in figure 33. In (100)
orientation, the compound consists of alternating layers of the TM and Al. This allows for two
possible surface terminations. We will focus on the Al-terminated phase, because Al clearly
possesses the lower surface energy compared to the TM. For this comparison, the surface
energies of the pure elements have to be calculated for the bcc lattice, i.e. bcc-Al (�Esurf =
0.623 eV/atom), bcc-Fe (�Esurf = 1.150 eV/atom), bcc-Ni (�Esurf = 1.038 eV/atom), and
bcc-Co (�Esurf = 1.175 eV/atom). The low surface energy of bcc-Al should prohibit any
segregation of TM atoms to the surface layer. We will see that this simple conclusion fails at
least for CoAl(100).
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Figure 33. The B2 structure can be interpreted as alternating Al and TM layers along the
crystallographic [100] direction. This either leads to an Al- or a TM terminated surface. In
this work, we concentrate on the Al-terminated alloy surface (as displayed for the ‘top view’).

For a detailed geometric characterization of the TM-Al(100) surface structures, GGA-
based spin-polarized DFT calculations [181] were performed and the results were compared
to the best-fit structure retrieved from low-energy electron diffraction (LEED). The LEED
versus DFT comparison is shown in figure 34 using schematic side views. In the case of
NiAl(100), the LEED structure determination by Davis and Noonan [182] was carried out
for the high-temperature phase of NiAl and finds an Al-terminated surface with no sign of
segregation. The layer distances are given as deviation from the bulk layer spacing db. For the
first interlayer distance d12 a strong inward relaxation is observed, whilst the spacing between
the second and third layer is slightly increased. Considering the fact that a deviation of 1%
corresponds to about 0.014 Å only, LEED and DFT results agree very well. Unfortunately,
the situation is not as easy as it seems: different studies arrive at contradictory and mutually
exclusive results for the high-temperature annealed NiAl(100) surface including a complete
Al termination [182], a termination by a mixed Al-rich layer [183, 184] and even a bulk-like
Ni termination with [185] and without [186] vacancies. We will come back to this discrepancy
at the end of this section.

The LEED structure determinations for FeAl(100) and CoAl(100) were performed by the
Erlangen LEED group [67, 187] using the ‘TensErLEED’ code for the intensity analysis [63].
The concentrations of the first five layers were determined by applying the ATA [136]
introduced in section 3.4, which allows us to simulate the scattering properties of a random
alloy.

The FeAl sample used had an average Al concentration of 47% only, so that the question
arises whether the ‘additional’ 3% of Fe atoms occupy sites in the volume or segregate to the
surface. As we see from figure 34, the best-fit structure shows an Al-terminated (100) surface
which is again consistent with the surface energies of the pure elements. The determined multi-
layer relaxation is very similar to the surface of ideal NiAl: the first spacing is contracted and
the second one is expanded.

From the results, one may guess that the situation will probably be the same for CoAl(100).
However, the LEED analysis tells a different story (figure 34): we find a large amount of
Co atoms (30 ± 7%) which reside on the nominal Al-terminated topmost layer. This large
enrichment of so-called antisites or defect atoms is restricted to the first layer, the second
and third layer show much less disorder and no deviation from bulk order and geometry is
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Figure 34. Comparison of structural parameters for CoAl, FeAl and NiAl(100) determined via
DFT and LEED structure analyses (schematic side view). While xi

Al denotes the Al concentration
in layer i , �di j and bi give the individual layer spacings and buckling amplitudes as deviations
from the ideal interlayer distance db .

detectable below the third layer. There is some geometric buckling caused by the existence of
two different species in the first layer, whereby the Co antisites show some outward relaxations
relative to the Al atoms. No buckling is retrieved for deeper layers.

One possible explanation for the found Co antisite defects would be that the experimental
data do not correspond to the equilibrium state of a certain antisite concentration in the near-
surface region of CoAl(100). This can, however, be excluded by annealing the sample to rather
high temperatures in order to disperse the Co antisite defects to the bulk and to follow their
segregation behaviour (details are given in [188]). So, the question arises, how the existence of
antisites on the CoAl(100) can be explained ex post facto. As a first step in understanding, the
surface energies, as introduced in section 3.4, for different surface terminations were calculated.
Since the first-principles calculations are restricted to ordered arrangements (otherwise, a CE
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Figure 35. Side and top views of (a) the LEED best fit structure and composition of CoAl(100)
assuming a random distribution of atoms within the layer, and (b) the ordered model slab used to
simulate top layer antisites in first-principles calculations.

has to be constructed which will be discussed in section 5.2), this demands we select a suitable
model to simulate antisites in the topmost layer. We choose the c(

√
2 × 3

√
2)CoAl2 structure

for the top layer which is shown in figure 35(b) on top of a B2 ordered substrate. For the ordered
model slab the in-plane unit cell is marked by black lines. This structure—often referred to as
‘(3 × 3)diag’ structure—was favoured for two reasons:

(i) The CoAl2 top layer contains 33% Co atoms, very close to the 30% retrieved from LEED.
(ii) Although the experimental LEED pattern of CoAl(100) shows a (1 × 1) symmetry with

sharp integer order spots, there were some diffuse intensities indicative of some lateral
SRO, consistent with the assumed c(

√
2 × 3

√
2) unit cell.

The model was used for a DFT calculation of the CoAl(100) surface. Considering the fact
that the LEED intensity analysis is based on a random alloy, while the DFT calculation used
an ordered (3 × 3)diag reconstruction for the topmost layer, there is a reasonable agreement
between the structural parameters resulting from DFT and LEED (figure 34). It should be
mentioned that the (3 × 3)diag reconstruction is also coupled to some lateral shifts in the
topmost layer which are, however, not important for the following discussion.

Table 7 gives the calculated surface energies in electronvolts per atom for a number of
different, geometrically fully relaxed (100) alloy surfaces with different terminations. Besides
the Al- and Co-terminated surface, and the (3 × 3)diag structure for the topmost layer, we
additionally provide data for a chemical c(2 × 2) superstructure (with a ‘50:50’ concentration
in the top layer) and a complete Co layer (i.e. all Al atoms are replaced by Co antisites, leading
to two complete Co layers at the alloy surface) called ‘TM 1L’. We immediately see (table 7)
that for all three systems the Al-terminated alloy surface has the lowest surface energy followed
by the (3 × 3)diag-terminated surface. So, the surface energies are not responsible for the
existence of Co antisites in the topmost layer of CoAl(100).

In equilibrium, there are two possible mechanisms for the top layer enrichment with Co
antisite defects: their creation right there or their segregation from a slightly Co-enriched
region below. As shown earlier [189], the mere creation of a Co antisite costs as much as
1.29 eV so that the former mechanism can be ruled out. In order to check for the second
possibility, i.e. the segregation of existing Co antisites, we use the concept of segregation
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Table 7. Surface energies of the TMAl(100) surfaces of B2 compounds with different alloy surface
terminations. All energies correspond to geometrically fully relaxed structures.

�Esurf (eV/atom)

Surface termination FeAl CoAl NiAl

Al 0.53 0.94 1.02
TM 1.53 1.91 1.36
(3 × 3) diag 0.81 1.35 1.16
c(2 × 2) 0.93 1.61 1.26
TM 1L 1.55 2.33 2.28

energies, as introduced in section 3.4, equation (33). From there, we recall that the segregation
energy �Eseg is the energy difference with respect to the exchange of a surface atom (here,
Al) with a bulk antisite defect (here, TM). This ansatz considers both the change in surface
energy by replacing the Al atom by an antisite and the bond energy change between the
nearest and possibly more distant neighbours. Methodically, relatively large model slabs
are necessary for the calculations: an isolated defect (TM) in a supercell consisting of six
3 × 3 (100) layers was used as the model (analogous to Bester et al [189]) whereby full
structural relaxations were allowed for the 54 atoms. The resulting segregation energies
for three different surface terminations with antisite concentrations of 50% (c(2 × 2)), 75%
((3 × 3)diag) and 100% (1M TL) Co are shown in table 8. Indeed, the resulting values allow
for an interpretation of the experimentally found surface structures, figure 34: for CoAl(100)
and NiAl(100) the low segregation energies for the (3 × 3)diag surface structure of −0.85 and
−0.61 eV prove that antisite segregation is accompanied by an energy gain so much larger
than the thermal energy that even a TM excess well below 1% should drastically influence the
surface’s stoichiometry when equilibrium is achieved. In contrast, we find positive segregation
energies for FeAl(100) whereby the segregation of antisites to the surface, assuming a c(2×2)

structure, is energetically degenerated with the case of no segregation. This, however, leads to
the interpretation that the surface termination of an ordered alloy is not necessarily defined by
the ideally ordered compound, but can be dominated by minor subsurface or bulk deviations
from its ideal composition. This result immediately allows us to resolve the experimental
discrepancies of NiAl(100) surfaces as described above. The contradictory observations are
probably only the result of slightly different levels of off-stoichiometry in the sample used,
which can clearly be below the detection limit of the techniques applied. Even if the sample
has nominally a concentration of 50% Al, there certainly can be tiny deviations from this
value in real alloy crystals. Although this deviation may be extremely small, the type of
existing antisites (Al or Co) will dominate the surface properties of the alloy. Our findings
receive additional support from recent theoretical works by Ruban [190] for fcc Ni3Al and
Pt3Fe and Pourovskii et al [191] for Ni–Pt, both based on coherent potential calculations in
the approximation of geometrically unrelaxed lattices.

The control of the surface composition by tiny bulk off-stoichiometries in CoAl(100)
compounds demand we extend today’s understanding about the stability of alloy surfaces to
the possibility of antisite defect segregation. This concept permits us to place the three related
systems NiAl(100), FeAl(100) and CoAl(100) in one consistent picture. The significance of
the described scenario should reach beyond the examples described and represents an important
step towards a general understanding of the surface and interface properties of strongly ordering
materials.
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Table 8. Segregation energies, �Eseg for TMAl(100) of B2 compounds for different surface
terminations.

�Eseg (eV/atom)

Surface termination FeAl CoAl NiAl

(3 × 3)diag +0.05 −0.85 −0.61
c(2 × 2) +0.00 −0.76 −0.54
TM 1L +0.23 −0.71 +0.05

Table 9. Interlayer distance d12 between the first and second layer of the CoAl(100) surface
assuming different structural models for the topmost layer. The bulk spacing is db = 1.43 Å. The
left column gives the value determined by LEED. Furthermore, the buckling amplitude b1 between
structurally independent atoms in the topmost layers is given.

LEED DFT-(1 × 1) DFT-c(2 × 2) DFT-(3 × 3)diag

d12 (Å) 1.38 1.306 1.345 1.385
b1 (Å) 0.08 — −0.096 0.027

5.2. Short-range order at surfaces

Although the use of the (3 ×3)diag structure as a model for the CoAl(100) surface reproduces
the experimentally determined antisites’ stoichiometry, the precise SRO is still lacking as
there are no experimental data available. A way out is offered by the influence of the top layer
chemical structure on the spacing and buckling of the top layer which are available with high
precision from LEED. Table 9 compares the results calculated for the c(2 ×2) and (3 ×3)diag
long-range ordering as well as for the absence of segregation [(1 × 1)] with experiment. Only
the (3 × 3)diag structure provides the correct sign of buckling and, at the same time, the
calculated top layer contraction comes closest to experiment.

However, this favourable comparison might be by chance or other models might fit the
experiment even better. Therefore, we apply the combination of DFT and CE, as used for
alloy bulk problems in section 4. The consideration of the surface’s properties demand
some additional effort (see section 3.4), especially with respect to the number of input DFT
structures. However, in the case of Co–Al, the problem can be simplified: from the LEED
best-fit structure of the CoAl(100) surface it is known that antisites exclusively segregate
to the topmost alloy layer. There is no significant antisite segregation in the next Al layer
(third layer) visible; only 10% Co are detected in the third layer of CoAl(100) via LEED.
This percentage is so small that it may be caused by some strong parameter correlations in
the LEED structure determination [192]. Since the second alloy layer is always a complete
Co layer, the local environment with respect to deeper layers is the same for all atoms in
the topmost layer. Indeed, a deviation from a complete Co layer in the second layer would
demand the formation of Al antisites. The energy cost to replace a Co atom by an Al antisite
amounts to 3.11 eV/atom and therefore such an exchange will not happen at all in practice.
For these reasons, the lateral SRO in the topmost layer of CoAl(100) should be describable by
a two-dimensional CE as sketched in figure 36. The subsurface layers are treated as layers of a
perfectly ordered B2 compound, while the ordering properties of the first layer are studied by
combining CE with MC simulations. Such an ansatz was successfully used to characterize a
single atomic PdAu [193] and CoAg [194] layer evaporated on Ru(0001). A similar approach
was applied by Scheffler’s group for investigations on adsorption [195] and oxidation [196]
on surfaces.
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Figure 36. Schematic side view of the model used for the CoAl(100) CE.

Table 10. Detected ground states of the topmost layer of CoAl(100) as a function of Co antisite
concentration. The ground states result from the constructed ground-state diagram, figure 38.

Model Top view Co conc. % �Esurf (meV/atom) �Esurf,mix (meV/atom)

Al-terminated 0 935 0.0

Structure (a) 12.5 1083 −27

(4 × 4) diag 25.0 1237 −48

Structure (c) 37.5 1405 −54

Structure (d) 50.0 1576 −58

Co 1L 100 2333 0.0

A set of 18 input structures only for the topmost layer was necessary to stabilize the 14
pair and multi-body figures used for the CE construction as given in figure 37. The calculated
surface energies of the selected input configurations correspond to geometrically fully relaxed
structures. Thereby, a positive value of the interaction stands for ordering,with a negative value
for clustering. A further reduction of the given set of effective interactions will destabilize
the CE fit. Again, the Conolly–Williams approach [102] (section 3) was applied for the
determination of the interactions. It should be mentioned that there is no nearest-neighbour
bond within the (100) layer, but only between neighbouring layers. Therefore, the first pair
interaction constructed corresponds to the second neighbour distance. We see from figure 37
that the first and third in-plane neighbour interactions are positive, favouring ordering, while
the second neighbour interaction is negative, favouring clustering, consistent with the assumed
ordering type, (3 × 3)diag, in section 5.1.

Analogous to section 4.1, a ground-state diagram is constructed whereby, however, we
now use the Co concentration in the topmost alloy layer as a parameter with a perfectly ordered
B2 structure below. All possible atomic configurations with up to 20 basis atoms in the in-
plane unit cell have been considered for the ground-state search. The resulting ground-state
line which was constructed from more than a million configurations is shown in figure 38. The
y axis of the diagram gives the surface mixing enthalpy, �Esurf,mix, with the surface energies
of the purely Al (x = 0) and purely Co (x = 1) terminated surface of the B2 structure as
reference energies (so, �Esurf,mix = 0.0 meV for the Al- and Co-terminated surfaces). For
0 � x � 1

�Esurf,mix(σ ) = �Esurf(σ ) − (1 − x)�Esurf(Al-term) − x�Esurf(TM 1L) (45)
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Figure 37. Used pair and multi-body figures for the two-dimensional CE of CoAl(100)
and corresponding interaction energies. The values are already multiplied by their individual
degeneration factors DF .

Figure 38. Calculated ground-state diagram for the CoAl(100) surface.

results, whereby ‘TM 1L’ again describes an alloy surface with the first Al layer completely
replaced by Co antisites. We find a number of LRO structures within the topmost alloy layer as
listed in table 10. Most important for the problem discussed in this work, the predicted ground
state for xCo = 1/3, is formed by two domains: the (4 × 4)diag structure being the ground
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state for xCo = 1/4 and ‘structure (c)’ in table 10 being the ground state for xCo = 3/8. So we
see that, indeed, the assumed (3 × 3)diag structure is not a ground state, although the ordering
type found (diagonal chains) is very similar to that of the (3 × 3)diag. The ground-state
diagram, figure 38, also displays the surface mixing enthalpy for all other considered surface
terminations as well as for the ideal random alloy. The latter lies energetically far above the
ground-state line manifesting the lateral ordering tendency of the topmost layer.

Although the ground-state analysis allows us to determine the kind of ordering for any
arbitrary antisite concentration in the topmost layer, one has to remember that it applies to
T = 0 K. In order to get access to finite temperatures, the constructed interactions (figure 37)
were used in MC simulations in order to predict the SRO of the topmost layer at finite
temperatures. We chose temperatures T = 200 and 500 K for the simulations. The number
of MC steps was increased until the resulting energy per atom became constant except for the
usual statistical fluctuations.

For a 60 × 60 cell the resulting real-space configurations at T = 200 K are displayed for
xCo = 0.30 and 0.50 by schematic top views in figure 39. The lower panels show enlarged
sections marked by white frames in the complete MC cell (upper panels). For xCo = 0.30,
we see the formation of Co chains along the [011] direction (along the diagonal defined by
the lower left and upper right corners). These Co chains are mostly separated by at least
two or three diagonal Al rows; there is no clustering of Co(011) chains. These ordering
tendencies are, indeed, characteristic for the ground-state structures found at this concentration
(table 10). Even for the higher antisite concentration, xCo = 0.50, the system tries to prohibit
the occupation of parallel diagonal [011] rows by Co atoms. Instead, chains of Co atoms along
the [001] and [010] directions are found. This behaviour is consistent with the ground-state
structure determined: reinspecting table 10, we see that for 50% Co antisites the resulting
ground state is given by quadratic blocks ordered along [011] consisting of four Co antisites.

Increasing the temperature destroys a large percentage of the characteristic Co chains
along [011] which is shown for xCo = 0.30 in figure 40: for T = 500 K the configuration
already clearly shows less diagonal chains of Co atoms than the configurations displayed in
figure 39. However, the ordering still shows deviations from an ideal random alloy.

In summary, our calculations demonstrate that, although the use of the (3×3)diagstructure
as a model for the topmost layer of a CoAl(100) surface represents a very reasonable guess,
it is not the ground state with respect to the ordering of the topmost layer. Our studies would
even allow for a quantitative comparison of SRO with experiment via the Warren–Cowley
SRO parameter. However, this would demand experimental investigations via STM on such
surfaces which do not—to the best of my knowledge—exist so far.

5.3. Beyond the limits of cluster expansion: incommensurate phases

It was already mentioned that the considerable interest in lightweight material alloys such as
Al–Cu, Al–Mg or Al–Zn comes from the possibility of hardening these alloys by controlled
heating and cooling processes. It is believed that the hardening effect is due to coherent
precipitates which act as obstacles for dislocation motions through the crystal. As we have
seen in section 4.3, the combination of MSCE and MC with DFT calculations allows us
for the first time to study extensively the shape-controlling factors of these microstructures on
quantum-mechanicalgrounds. However, up to this point we ignored the fact that, especially for
technical applications, the properties of the alloy surface become relevant. Surface properties
of Al-rich Al–Zn alloys are of particular interest with respect to the influence of precipitate
hardening on the surface. For this reason, we return to the phase-separating, fcc-based alloy
system Al–Zn which will bring our investigations beyond the applicability of CE. Moreover,
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Figure 39. Resulting top layer configurations of CoAl(100) at T = 200 K for xCo = 0.30 and
xCo = 0.50. Especially for xCo = 0.30, the tendency of Co antisites to form chains along [011] is
clearly visible. For xCo = 0.50 chains along [010] and [001] were formed to prevent clustering of
[011] chains.

surface segregation at low-index surfaces still represents probably the best-suited model to
study segregation at grain boundaries which are normally too complex for a treatment via
first-principles calculations.

In the following, we focus on the Al–Zn(111) surface for two different reasons: on the
one hand, the difference in the surface energies of Al(111) and fcc-Zn(111) is largest among
the low index surfaces (table 3), so that Zn segregation may be expected. On the other hand,
the mechanical instability against rhombohedral distortions found in this direction (figure 27)
allows for large relaxations of the Zn layers. As a consequence, many segregation profiles
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Figure 40. Resulting top layer configurations of CoAl(100) with 30% Co antisites for T = 500 K.

possess nearly identical surface formation energies, because the creation of [111] interfaces
does not cost more than 1–2 meV/atom. Indeed, this energy amount is much smaller than
the mentioned difference in the surface energies of fcc-Zn(111) and Al(111). Consequently,
calculations via fcc-based CE lead, for T → 0, to a lowest energy structure with two [111]
interfaces and two Zn-terminated surfaces. Again, the starting point for this calculation was
an ideal random alloy containing 8% Zn, from which the final configuration has emerged via
MC simulated annealing.

Indeed, experimental observations [197] of Al–Zn(111) surfaces report Zn-covered
surfaces even at room temperature. We may interpret this enrichment of Zn atoms at the
surface as a Zn film on the surface of an Al-rich Al–Zn alloy. From this perspective, the
system Al–Zn(111) could be interpreted as a ‘self-epitaxial’ system with the formation of a
Zn film driven by segregation. Since [111] is the elastically softest direction in fcc-Zn, but
the hardest direction in Al, the equilibrium lattice parameter in Al-rich Al–Zn alloys comes
very close to the lattice constant of pure Al: as we know from LDA calculations applying the
concept of constituent strain, for a (111) Al–Zn SL with 8% Zn the expected lattice parameter
is practically identical to that of elemental Al. Consequently, the properties of an Al–Zn(111)
interface separating even a large number of near-surface Zn layers from the Al-rich bulk should
be well described by Zn layers grown on Al(111).

However, the existence of a nanometre-thick Zn film demands the consideration of the
following two problems:

(i) Even if the Zn film maintains coherence at the interface with the Al bulk, it would be
unlikely that near-surface Zn layers still crystallize in the fcc lattice, because the misfit
in the in-plane lattice constants of hcp-Zn and Al amounts to as much as 7%. Instead,
the stacking sequence may switch from fcc to hcp stacking which can be realized simply
by stacking faults (figure 41). While both fcc(111) and hcp(0001) crystal surfaces are
built from the same close-packed layer, their stacking is different: fcc(111) possesses the
‘ABC’ stacking sequence, but hcp(0001) is ‘AB’ stacked. We applied DFT to study the
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Figure 41. While fcc(111) and hcp(0001) are both formed by close-packed layers (top view),
their stacking is different (side view): fcc(111) shows ‘ABC’ stacking, whilst for hcp(0001) ‘AB’
stacking applies.

Figure 42. Schematic side views of different stacking sequences of epitaxially grown Zn films on
Al(111): results of first-principles calculations, assuming that the Zn film grows commensurately
on Al. (a) For 1 ML thick films, fcc stacking is energetically preferred. (b) For larger coverages,
stacking faults and three-dimensional island growth are found.

stacking sequence of film layers for the hypothetical epitaxial system Zn/Al(111) which
is—following the discussion above—probably the best-suited model to get access to this
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alloy interface. We found that, for film thicknesses up to two monolayers (ML),3 only the
continuation of the Al fcc stacking is energetically favoured. As an example figure 42(a)
compares the surface formation energies for a coherent fcc- and hcp-stacked Zn layer
on Al(111), demonstrating the preference for the fcc stacking. We also checked for the
growth mode. Thus, we compared the energies of different film morphologies (flat layers,
islands with different height and stacking, etc) for a given Zn coverage. Our calculations
clearly predict Stranski–Krastanov growth for epitaxially grown Zn films: first a complete
Zn layer is formed on the Al(111) surface, before three-dimensional island growth sets
in. As an example, figure 42(b) compares the surface formation energies of 2 ML Zn
films consisting of two flat fcc layers (left) and a ‘50–50’ mixture of a trilayer and a
monolayer (right). The stacking fault (with respect to fcc) in the trilayer between the top
and second film layer corresponds to the arrangement of the lowest energy for islands that
are three layers high. We see that the configuration with two different island heights lies
energetically below layer-by-layer growth. All surface formation energies given apply to
geometrically fully relaxed structures.

(ii) If the growing film switches its stacking from fcc to hcp, it may also be possible that the
in-plane lattice parameter changes from the Al to the Zn (hcp-Zn) lattice constant. Then,
the system can no longer be described as a coherent system. Instead, a grain boundary will
emerge. In epitaxial growth, this is called incommensurate growth. In order to check for
that, we repeated our DFT calculations for the initial growth mode for small, i.e. laterally
limited, Zn islands, whereby both the island size and its position on the substrate were
varied. Technically, this demands DFT calculations of model systems with more than
200 atoms, which is close to the limits of current computers, especially when geometric
relaxations have to be considered. We used a 6 × 6 Al surface unit cell so that Al layers
consist of 36 atoms, whilst the island sizes varied between 7 and 19 Zn atoms. Since the
main conclusions are largely independent of the island size, we can restrict the discussion
to the smallest one, as shown in figure 43(a): as soon as we allow for lateral relaxations, the
Zn island no longer maintains coherence with the Al(111) substrate, but relaxes laterally
close to its native lattice parameter4, while the layer distance between the Zn island and
Al substrate slightly changes. The resulting energy gain amounts to 52 meV/atom. Thus,
the centre atom of the island favours the fcc-hollow site over the hcp-hollow site of the Al
substrate by 22 meV/atom. We also determined the orientation of the incommensurate
island by rotating it around its centre. The result is shown in figure 43(b) as a function
of the rotation angle 
 (
 = 0 corresponds to the orientation of two fcc-hollow sites).
The minimum energy develops for 
 = 0, i.e. the configuration where the island has its
in-plane lattice vectors parallel to those of the Al substrate. With the calculations repeated
for bilayer high islands, the results are the same: there is incommensurate growth with a
lattice parameter very close to that of hcp-Zn. Interestingly, the distance between the two
Zn layers is already according to the anomalous d/ap ratio of hcp-Zn (d/ap = 1.15).

At this point, we will compare the calculations with experimental results retrieved from our
LEED studies. The experiments were carried out in a standard UHV chamber equipped with a
four-grid LEED optics which also served as a retarding-field spectrometer for Auger electron
spectroscopy (AES). The film coverage was determined via thermal desorption spectroscopy
(TDS). Zn was evaporated from a Mo crucible (experimental details are given elsewhere [198]).

3 We define one monolayer as that amount of atoms necessary to completely cover the Al substrate surface by Zn. In
the case of coherent growth the number of film atoms per layer is identical to the number of substrate atoms per layer.
4 The discrepancy between the Zn bulk lattice constant and the lattice parameter found (figure 43(a)) of the island is
caused by the rather limited island size and disappears with increasing number of Zn atoms.
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Figure 43. (a) Top and side view of a 1 ML high and 7 atoms large Zn island on an fcc(111)
surface: As soon as we allow for lateral relaxation the Zn island becomes incommensurate with
respect to Al(111). (b) Energy per Zn atom as a function of island orientation. The lowest energy
position corresponds to a parallel adjustment of Zn and Al surface unit cell vectors.

Figure 44 shows the LEED pattern (T = 100 K) of a Zn film (
 ≈ 2 ML) evaporated on
Al(111) at T = 400 K. There are six satellite spots around every integer-order spot. The
hexagonal arrangement of the integer-order spots reflects the symmetry of the Al(111) surface.
With increasing energy of the incident electron beam a second, third, etc, diffraction order of
these satellite spots appears in the LEED pattern which can be interpreted by the following
picture: the satellite spots are caused by a close-packed film layer with a smaller in-plane
lattice parameter than Al(111). Consequently, its unit-cell vectors in k space must be larger
than those of Al(111). It turns out that, with increasing Zn coverage,all satellite spots disappear
except for that one called (1, 0)Zn in figure 44. This spot lies to the right of the Al integer-
order spot and therefore the corresponding real-space unit vector is smaller than that of Al.
The same observation also holds for the (0,1) spot. All other satellite spots arise by multiple
diffraction processes between incommensurate Zn and Al layers and disappear together with
the Al integer-order spots when the film thickness exceeds the penetration depth of the LEED
electrons. A detailed analysis of a number of LEED patterns recorded for different electron
energies and Zn coverages always finds that the (1, 0)Zn satellite spot corresponds to about
a 7% smaller in-plane lattice parameter being exactly the misfit between the in-plane lattice
parameters of Al(111) and Zn(0001). So, our observation is consistent with the predicted
growth of an incommensurate Zn film on Al(111) from the very beginning. However, the
LEED pattern allows for more information: we see that the superstructure spots are as sharp
as the integer-order spots, i.e. there is long-range ordering, at least within the range of the
transfer width of the LEED optics (∼200 Å). Therefore, the first Zn layer will most likely
already be completed before the next film layer starts to grow. With increasing Zn coverage
the Al spots disappear as well as the multiple diffraction spots, i.e. one of the six satellite spots
remains so that finally a (1 × 1) LEED pattern can be observed due to an unreconstructed,
incommensurate Zn film. The LEED pattern has threefold symmetry. With further increasing
Zn coverage the symmetry of the pattern changes continuously from three- to sixfold as shown
in figure 45 by comparing experimental LEED I (E) spectra for the (10) and (01) beams. At this
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Figure 44. LEED pattern of 2 ML Zn/Al(111). The superstructure spots around each Al spot are
characteristic for incommensurate growth (see the text).

point the reader should note that both threefold and sixfold symmetry can be due to different
physics. A sixfold symmetry of an hcp(0001) surface demands, for example, the presence
of atomic steps so that both possible hcp domains exist. The side view in figure 41 of the
hcp(0001) surface shows an A-layer-terminated hcp(0001) surface. Removing this top layer
leads to an B-layer-terminated hcp(0001) surface. Each of the two terminations has threefold
symmetry; only their coexistence in a 1:1 ratio leads to sixfold symmetry. However, up to
now, it is by no means clear that the growing Zn film possesses an hcp stacking at all, because
equally weighted fcc twins would also lead to a sixfold symmetry. Fortunately, LEED I (E)

spectra are extremely sensitive to the detailed stacking sequence of the near-surface layer and
therefore intensity analyses allow for a detailed determination of the stacking in the Zn film
which will be discussed next. This access to stacking was already successfully applied to, for
example, epitaxial Co films on Cu(111) [199–201].

Full dynamical LEED intensity analyses were carried out to determine the structure of
the Zn films for different thicknesses. Thus, we never detected any fcc stacking between
near-surface film layers. The film consists of the two described hcp domains only. For low
coverages one of the hcp domains dominates and therefore the film shows only threefold
symmetry. The percentages of the two domains for three different film thicknesses, together
with the first three layer distances, the spacing common to all deeper layers and the in-plane
lattice parameter are given in table 11 resulting from the quantitative LEED analyses. The
errors given result from the variance of the Pendry R factor [55] (see section 3.4). The last table
column gives the values resulting from DFT where the in-plane parameter was adjusted to that
determined via LEED. Interestingly, the three top layer distances do not depend on the film
thickness. The agreement between the resulting DFT and LEED values is excellent. Figure 46
compares experimental and theoretical best-fit spectra for the 25 ML film which already has
sixfold symmetry. Surprisingly, however, there is a discrepancy for the first layer distance
(determined by LEED with an accuracy of ±0.01 Å). A possible reason could be the adsorption
of residual gas molecules on the Zn film surface. As we know from our studies [202, 203] for
the epitaxial system Ni/Cu(100), such adsorption can lead to considerable expansion of the
first film interlayer distance.

The continuous change from three- to sixfold symmetry allows us to speculate with respect
to the growth mode. Independent from the actual roughness of the Zn film, layer-by-layer
growth cannot account for the transition from three- to sixfold symmetry, only the I (E) curves
of (1,0) and (0,1) beams are exchanged after every evaporated Zn monolayer. This situation is
illustrated in figure 47: adding one ML to the surface transforms all A domains to B domains,
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Figure 45. Experimental LEED I (E) spectra of the (1, 0) and (0, 1) beam for three different Zn
coverages. For the 25 ML film the spectra are practically identical as expected for a film with
sixfold symmetry.

Figure 46. Comparison between experimental and theoretical best-fit LEED spectra for a 25 ML
Zn film on Al(111).

and vice versa. Experimentally, this would lead to an exchange of the (1,0) and (0,1)
intensities with every additionally deposited Zn ML which, however, was never observed.
So, the continuous transition from three- to sixfold symmetry must come by 3d island growth.
With increasing Zn coverage the height distribution of Zn islands becomes wider, until both
domains reach, on average, a distribution of 50%. Such behaviour was also observed for
Co/Cu(111) [199–201].

The question arises, what causes the unequal weight of hcp-Zn domains for low coverages
leading to a LEED pattern with threefold symmetry? Unfortunately, DFT calculations of
a complete incommensurate Zn layer on an Al(111) substrate would go far beyond the
possibilities of today’s computers (slabs containing more than 1000 atoms would be necessary).
Moreover, the CE cannot be applied, because the ansatz is restricted to coherent problems.
However, from our LEED studies we know that in the initial growth most likely a complete
layer is formed which causes sharp extra spots in the LEED pattern. With more Zn deposited,
the arriving Zn atoms again have the choice to occupy ‘nearly’ (because of the 7% misfit with
respect to the Al substrate) fcc- or hcp-hollow sites. Our DFT calculations carried out for bilayer
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Figure 47. Layer-by-layer growth cannot explain the observed continuous transition from three- to
sixfold symmetry as shown by a schematic side view. The evaporation of a complete layer only
leads to the exchange of the percentages of A- and B-terminated surface areas.

Table 11. Best-fit parameters resulting from LEED intensity analyses and DFT calculations. Here,
dmn stands for the layer distance between the mth and nth film layers, while ap gives the fitted
in-plane lattice parameter. The errors result from the variance, equation (43), of the Pendry R
factor [55].

LEED results DFT

Parameter 5 ML Zn 8 ML Zn 25 ML Zn hcp(0001)

Ratio (hcp-dom.) 25:75 30:70 50:50
d12 (Å) 2.46 ± 0.01 2.46 ± 0.01 2.47 ± 0.01 2.43
d23 (Å) 2.41 ± 0.02 2.41 ± 0.02 2.41 ± 0.02 2.41
d34 (Å) 2.41 ± 0.04 2.43 ± 0.04 2.43 ± 0.03 2.43
db (Å) 2.45 ± 0.04 2.45 ± 0.03 2.45 ± 0.03 2.45
ap (Å) 2.66 ± 0.03 2.66 ± 0.02 2.66 ± 0.02 2.66 (fix)
Rp 0.108 0.107 0.079

high islands find that, indeed the occupation of ‘nearly’ fcc sites is clearly preferred over hcp-
sites by 16 meV/Zn atoms. The reason is the following: Al atoms in the top substrate layer with
positions ‘nearly’ directly underneath the hcp-hollow site of the film layer repulsively interact
with a Zn atom occupying the ‘nearly’ hcp-hollow site. The mentioned repulsive interaction
can be avoided by occupying the ‘nearly’ fcc-hollow site with no Al atom underneath. As
discussed above, three-dimensional growth starts with the second Zn layer so that this second
growing layer is not yet completed when the next layer starts to grow. We even calculated the
energetic situation for three ML high Zn islands: the two stacking possibilities on an relaxed
fcc-stacked bilayer are nearly energetically degenerated, i.e. the influence of the Al substrate
on the film energetics disappears. So, the unequal weight of the two hcp domains for low
coverages is most likely caused by the initial growth of the second Zn layer.

The results above hint towards the following scenario: from the very beginning, Zn forms
incommensurate islands, until a complete incommensurate ML with a well-defined orientation
(dictated by the Al substrate) exists leading to sharp LEED extra spots. When the second layer
starts to grow the fcc stacking sequence of the substrate orientation is still preferred due to the
repulsive interaction between hcp-site-deposited Zn atoms and Al atoms in the first substrate
layer. With the first Zn layer completed, three-dimensional island growth sets in and the
preference for occupying fcc sites is lost. With further increasing Zn coverage, island growth
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leads to unequally weighted hcp domains, equivalent to a continuous transition from threefold
to sixfold symmetry, as observed by LEED.

Although the investigations above were carried out for the special model system
Zn/Al(111), we believe that the results should be representative for the Al–Zn(111) surface for
the following reasons:

(i) The predicted ground state via CE for an fcc-based Al0.92Zn0.08 alloy with (111) surface
orientation consists of a purely Zn block near the surface, separated from Al by an interface
along [111]. Following the discussion above, this should cause the development of a grain
boundary.

(ii) The equilibrium lattice constant of Al-rich Al–Zn alloys is within 5
1000 Å, identical to that

of pure fcc-Al.

Methodologically, we see that the combination of quantitative LEED, DFT and CE permits a
detailed structural characterization of near-surface interfaces, even if the interface considered
represents a grain boundary. The understanding of such interfaces with respect to their
detailed atomic structure may also help to learn more about grain boundaries in bulk alloys.
Nevertheless, the transformation of the results to real Al–Zn(111) alloys is still an assumption,
i.e. experimental studies of these alloy surfaces are highly desirable.

6. Summary

The quantitative description of the properties of binary metal alloy is a very delicate task: on
the one hand, the theoretical model should be based on quantum mechanics to be as accurate as
possible, while, on the other hand, the description should allow us to study problems ranging
from the atomic to the micrometre length scale. Additionally, the temperature dependence of
quantities considered must be taken into account. Therefore, the main aim of this work was
to illustrate the present status in the field in this sense and to demonstrate the considerable
improvements having become possible by recent methodological developments. The applied
combination of quantum mechanics and statistical physics via DFT, CE and MC simulations
creates the, up to now, most successful approach to describe the phase stability and formation
of metal alloys and their surfaces.

Since the results of this combination reach an accuracy rendering a quantitative comparison
with experimental data possible, the method allows us to check directly the correctness of our
calculations (e.g. by LEED structure determinations in the case of surface studies) as well
as to settle our quantitative understanding of alloy properties. Examples are the influence of
SRO on mixing enthalpies, the shape controlling factors of characteristic microstructures in
quenched solid solutions or the energetic terms which determine the segregation profile at an
alloy surface.

Apart from their practical importance, the alloy problems presented were also selected
to demonstrate the large range of applications of the method. Thus, some long-standing
questions could be answered and experimental discrepancies removed. Indeed, the new
methods’ treatment of different alloy phenomena allows us to study important properties such
as

• Ground states: extended ground-state searches for α-brass and Ag–Pd detect the existence
of low-temperature ground states as an important expansion of the corresponding phase
diagrams. While in the case of α-brass our prediction perfectly agrees with experimental
studies, for Ag–Pd an experimental verification is still lacking and would be highly
desirable.
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• Short-range order: for a quantitative experiment–theory agreement, calculations of
mixing enthalpies of solid solutions demand a consideration of SRO. This was
demonstrated for α-brass, where the SRO parameters determined agree very well with
experimental data. The extension of ‘CE plus MC’ to treat alloy surfaces was applied to
identify the SRO behaviour of Co antisites in the topmost layer of CoAl(100) as determined
by quantitative LEED, and also applied in the present work.

• Precipitation—morphology and dynamics of microstructures: the possibility to study giant
configurations consisting of many thousands of atoms with our approach was applied to
calculate the size–shape relation of coherent Zn precipitates in Al–Zn alloys, whereby
again excellent agreement with experiment was reached. Our results led to an important
extension of today’s understanding of the shape-controlling factors of precipitates: the
observed faceting of microstructures at low temperatures can only be explained by the
anisotropy of the interfacial energy rather than by the strain energy which, however, is
responsible for the observed flattening of precipitates. Moreover, a kinetic MC approach
was developed in order to study the dynamics of the microstructures. Their distribution
follows classical Ostwald ripening.

• Surface segregation: as an important example of surface segregation, the segregation of
TM defect atoms in the B2 structure of TM-Al alloys was studied. The investigations solve
some experimental discrepancies regarding the NiAl(100) surface and allow us to develop
a model which places the three related systems NiAl(100), FeAl(100) and CoAl(100) in
one consistent picture. The surface properties of these systems are controlled by very small
off-stoichiometries from the ideal concentration of 50% Al. The theoretical predictions
agree with experimental data resulting from the—again quantum-mechanical—evaluation
of LEED intensities.

• Grain boundaries: finally, we have seen that the combination of DFT, CE and MC with
LEED structure determination even allows us to learn more about incoherence. In the case
of the fcc-based system Al–Zn, the heavily segregating Zn atoms lead to a grain boundary
between the segregated Zn layers and the Al-rich Al–Zn alloy driven by the energy gain
of the Zn layer by giving up the instable fcc phase.

Since the approach used is only a few years’ old, its application potential is by no means
already reached. There are a number of solid properties which may be treated via DFT, CE
and MC after some further development, such as, for example, nucleation processes, the initial
growth of epitaxial films, island growth on surfaces or an extension to ternary metal systems.
Since the approach allows us to describe the behaviour of real alloy systems, a strong interplay
with experimental groups is highly desirable.
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[91] Wolverton C, Ozoliņš V and Zunger A 1998 Phys. Rev. B 57 4332
[92] Zunger A 1994 Handbook of Crystal Growth vol 3, ed T D J Hurle (Amsterdam: Elsevier) p 997 and references

therein
[93] Wood D M and Zunger A 1988 Phys. Rev. Lett. 61 1501
[94] Müller S, Wang L-W, Zunger A and Wolverton C 1999 Phys. Rev. B 60 16448
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